Quantified Gamow Shell Model interaction for *p*- (and maybe *sd*-) nuclei

Y. Jaganathen (IFJ-PAN), R. Id Betan (CONICET), N. Michel (IMP),
W. Nazarewicz (MSU-NSCL), M. Płoszajczak (GANIL),
B. Fornal (IFJ-PAN), N. Cieplicka-Oryńczak (IFJ-PAN),
S. Leoni (INFN)

Quantified Gamow Shell Model interaction for *p*-(*sd*-) nuclei

Y. Jaganathen, R. Id Betan, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C 96, 054316 (2017)

We optimized an **effective interaction** within the **Gamow Shell Model (GSM)** framework, designed to describe a variety of **structure** (**bound + unbound**) and **reaction** observables across the **p**-nuclei ($A \approx 5 - 15$)

Statistical studies were carried out to assess statistical uncertainties and correlations.

Now is the time for **applications** in collaboration with experimentalists: **Interplay** theory ⇔ experiments to improve the interaction and make better predictions.

Outline

- 1. The framework: the Gamow Shell Model
- 2. The quantified GSM effective interaction
- 3. Applications
 - Correlation densities
 - Excited spectra
- 4. How to improve the interaction with different experimental data
- 5. Summary and outlook

Open-quantum system extension of the

- traditional Shell Model
- HO \rightarrow finite-depth potential:
 - Woods-Saxon
 - Gamow Hartree Fock
- S.p. states, solutions of the one-body radial Schrödinger equation:

$$u_{\alpha\ell j}''(r) = \left[\frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2}U(r) - k^2\right]u_{\alpha\ell j}(r)$$
$$U(r) = V_{WS}(r) + V_{so}(r)\vec{\ell}\cdot\vec{s} + U_C(r)$$

- Specific boundary conditions:
 - Bound states, resonances:
 - Scattering states (continuum): $u_{k\ell j}(r) \sim C_+ H_\ell^+(\eta, kr) + C_- H_\ell^-(\eta, kr), \quad r \to +\infty$

 $u_{n\ell j}(r) \sim C_+ H_\ell^+(\eta, kr), \quad r \to +\infty$

The Framework: The Gamow Shell Model

The Framework: The Gamow Shell Model

- Both correlations and continuum effects are treated on the same footing (Berggren ensemble)
- Discretization of the contours \rightarrow large basis
- GSM-Cluster orbital shell model (COSM) Hamiltonian:

$$H = \sum_{i=1}^{N_v} \left[\frac{\vec{p}_i^2}{2\mu_i} + U(i) \right] + \sum_{i< j=1}^{N_v} \left[V_{\text{res}}(i,j) + \frac{\vec{p}_i \cdot \vec{p}_j}{M_c} \right]$$

- Translational invariance, but approximate antisymmetry in the laboratory frame
- Exact treatment of the Coulomb interaction
- Diagonalization of H gives the A-body bound states + resonances

The Interaction for p-nuclei

Neutrons

- <u>s, p, d and f</u> scattering continua, $k_{max} = 2.0 \text{ fm}^{-1}$
- 4 nucleons in the continuum

- Effective finite-range NN potential
 - Gaussian-like with central + spin-orbit + tensor + Coulomb channels
 - Based on H. Furutani, H. Horiuchi, and R. Tamagaki, Prog. Theor. Phys. 62, 981 (1979) •
 - 7 parameters adjusted to the He, Li, Be chain ground-state energies + chosen excited states
- Statistical study to compute **uncertainties** and **correlations**

Protons

The zeroth order NN potential

Nucleus	State	E	E_{exp}	Γ	Γ_{exp}	
⁶ He	0^+	-1.063	-0.973			
⁶ He	2^{+}	0.938	0.824	168	113(20)	
⁷ He	$3/2^{-}$	-0.578	-0.528	178	150(20)	
⁸ He	0^+	-3.225	-3.112			
⁶ Li	1^{+}	-3.724	-3.699			
⁶ Li	0^+	-0.054	-0.136			
⁷ Li	$3/2^{-}$	-10.688	-10.949			
⁷ Li	$1/2^{-}$	-10.359	-10.471			
⁸ Li	2^{+}	-13.350	-12.982			
⁹ Li	$3/2^{-}$	-16.677	-17.046			
⁶ Be	0^+	1.390	1.371	21	92(6)	
⁷ Be	$3/2^{-}$	-8.977	-9.305			
⁸ Be	0^+	-28.572	-28.204	0	0.0056(3)	
⁹ Be	$3/2^{-}$	-30.230	-29.870			
⁹ Be	$1/2^{+}$	-27.747	-28.186	0	217(10)	

- r.m.s. deviation of 250 keV
- Good starting point for detailed structural and reaction studies

- s, p, d, f shells
- 4 nucleons in the continuum (converged calculations)

The zeroth order NN potential

Parameters

Pa	rameter	Value		
control	S=1, T=1	-3.2 ± 22.0		
	S=1, T=0	-5.1 ± 1.0		
Central	S=0 , T=0	-21.3 ± 6.6		
	S=0,T=1	-5.6 ± 0.5		
spin-orbit	S=1, T=1	-540 ± 1240		
tensor	S=1, T=1	-12.1 ± 79.5		
	S=1, T=0	-14.2 ± 7.1		

 Singular values (eigenvalues of the normalized Hessian matrix)

\overline{n}	s_n	V_{c}^{11}	V_c^{10}	V_{c}^{00}	V_{c}^{01}	V_{LS}^{11}	V_T^{11}	V_T^{10}
1	243	0.00	0.82	-0.03	0.53	0.00	0.00	0.23
2	43.0	0.00	-0.49	-0.02	0.85	0.00	-0.01	-0.19
3	7.06	-0.04	-0.16	0.79	0.05	0.04	-0.07	0.58
4	3.94	0.02	-0.25	-0.61	0.01	-0.09	-0.04	0.75
5	0.57	-0.23	-0.02	-0.09	0.00	0.97	-0.01	0.04
6	0.20	0.65	-0.03	0.04	0.01	0.16	0.74	0.06
7	0.12	0.73	0.01	0.00	0.00	0.16	-0.66	-0.04

• The three remaining parameters are **sloppy**, i.e. unconstrained by the chosen set of experimental data chain

(MeV)

⁴He

Applications - Correlation Densities

- For further discussion:
- K. Hagino and H. Sagawa, Phys. Rev. C **72**, 044321 (2005)
- G. Papadimitriou, A. T. Kruppa, N. Michel, W. Nazarewicz, M. Płoszajczak and J. Rotureau Phys. Rev. C **84**, 051304(R) (2011)

Quantified GSM interaction for p (and sd-) nuclei

correlation/clusterization

Predictions - Energy Spectra with uncertainties

Helium chain

- Good overall agreement for the energies and the widths for the A=7 nuclei,
- But large uncertainties in the He chain which come from the sloppiness of the T=1 parameters.

How to improve the interaction?

- How can we better constrain the parameters / add more correlations?
 - Experimental data of different kinds:
 - charge/matter radii,
 - EM moments...
 - Energies of high-lying states which:
 - can be described in the valence space
 - + are **simple** (from a SM point of view)
 - and not too embedded in the continuum (close to particle emission thresholds).

The 21.47-MeV M4 resonant excitation in ¹³C

Super-pure stretched coupling between Op_{3/2} and Od_{5/2} (ongoing theoretical analysis):

 See N. Cieplicka-Oryńczak's talk tomorrow on the proposed experiment at the Cyclotron Centre Bronowice (CCB) in Kraków.

(Picture courtesy of N. Cieplicka-Oryńczak)

Summary and Outlook

- Within the Gamow Shell Model, we currently have:
 - a well-optimized interaction for p-nuclei
 - a code which can calculate all **observables** (within the GSM framework).
- To improve the interaction, we need for **<u>exotic states</u>**:
 - experimental data of different kinds (charge/matter radii, EM moments...)
 - **stretched** / simple high-lying states.

- Outlook: a GSM interaction for sd-nuclei (A > 16):
 - Local interaction for small chains of nuclei (on-going collaboration with the Milano group on the O chain, and possible collaboration with the Legnaro group)
 - Global interaction, if there is a high interest...

Summary and Outlook

- Within the Gamow Shell Model, we currently have:
 - a well-optimized interaction for p-nuclei
 - a code which can calculate all **observables** (within the GSM framework).
- To improve the interaction, we need with respect to exotic states:
 - experimental data of different kinds (charge/matter radii, EM moments...)
 - stretched states.

- Outlook: a GSM interaction for sd-nuclei (A > 16):
 - Local interaction for small chains of nuclei (on-going collaboration with the Milano group on the O chain, and possible collaboration with the Legnaro group)
 - Global interaction, if there is a high interest...

Thank you for your attention!

Back-up

$$V = V_c + V_{LS} + V_T + V_{\text{Coul}}.$$

$$\tilde{V}_{c}(r) = \sum_{n=1}^{3} V_{c}^{n} \left(W_{c}^{n} + B_{c}^{n} P_{\sigma} - H_{c}^{n} P_{\tau} - M_{c}^{n} P_{\sigma} P_{\tau} \right) e^{-\beta_{c}^{n} r^{2}}$$
(5)

$$\tilde{V}_{LS}(r) = \boldsymbol{L} \cdot \boldsymbol{S} \sum_{n=1}^{2} V_{LS}^{n} \left(W_{LS}^{n} - H_{LS}^{n} P_{\tau} \right) e^{-\beta_{LS}^{n} r^{2}} \quad (6)$$

$$\tilde{V}_{T}(r) = S_{ij} \sum_{n=1}^{3} V_{T}^{n} \left(W_{T}^{n} - H_{T}^{n} P_{\tau} \right) r^{2} e^{-\beta_{T}^{n} r^{2}}, \qquad (7)$$

where $r \equiv r_{ij}$ stands for the distance between the nucleons *i* and *j*, *L* is the relative orbital angular momentum, $\mathbf{S} = (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j)/2, \, S_{ij} = 3(\boldsymbol{\sigma}_i \cdot \hat{r})(\boldsymbol{\sigma}_j \cdot \hat{r}) - \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$, and P_{σ} and P_{τ} are spin and isospin exchange operators, respecIn order to be applied in the present GSM formalism, the interaction is rewritten in terms of the spin-isospin projectors Π_{ST} [51, 52]:

$$V_{c}(r) = V_{c}^{11} f_{c}^{11}(r) \Pi_{11} + V_{c}^{10} f_{c}^{10}(r) \Pi_{10} + V_{c}^{00} f_{c}^{00}(r) \Pi_{00} + V_{c}^{01} f_{c}^{01}(r) \Pi_{01}, \quad (8)$$

$$V_{LS}(r) = (\boldsymbol{L} \cdot \boldsymbol{S}) V_{LS}^{11} f_{LS}^{11}(r) \Pi_{11}, \qquad (9)$$

$$V_T(r) = S_{ij} \left[V_T^{11} f_T^{11}(r) \Pi_{11} + V_T^{10} f_T^{10}(r) \Pi_{10} \right], \quad (10)$$