Prompt gamma imaging for online monitoring in proton therapy - SiFi-CC project

Aleksandra Wrońska Hadron Physics Department Marian Smoluchowski Institute of Physics Jagiellonian University in Kraków

PRZYSZŁOŚĆ FIZYKI JĄDROWEJ NISKICH ENERGII W POLSCE A ROZWÓJ KRAJOWEJ INFRASTRUKTURY BADAWCZEJ ŚLCJ UW Warszawa 14-15.01.2019

Context: cancer

 1 in 4 deaths caused by cancer in the EU (Poland close to this average)

- >3.7 million new cases and ~1.9 million deaths/year make cancer the second most important cause of death and morbidity in Europe
- trend: increasing...

Treatment methods:

- Surgery
- Chemotherapy
- Immunotherapy (Nobel prize 2018)
- Radiotherapy

X-ray vs proton therapy

- Tumour irradiation an important way of treatment 2
- Advantages of proton therapy compared to X-rays:
 - Conformal dose distribution
 - **Biological effectiveness**

Why to monitor beam range?

głębokość

- Range effects for
- an unmodelled cavity:
- # src: Knopf, Lomax Phys. Med. Biol 2013 Photons: dose larger by <5%
 - lons: range larger by ~1 cm

"In-vivo range verification methods would represent an optimal solution for full explotitation of the advantages afforded by the ion beam"

Proton therapy is a precise and selective treatment method...

... provided you have a perfect 3d map of patient in terms of proton stopping power!

Sources of uncertainties:

- Transformation of imaging info $CT \rightarrow dE/dx$
- Patient positioning
- Anatomical changes
 - Weightloss
 - Change of tumour size/shape
 - **Runny nose**
- **Reduction of safety margins**
- Better/safer treatment plans

15.01.2019

Aleksandra Wrońska

Approaches to range monitoring

Idea: exploit by-products of patient irradiation with ion beam:

- Protons
- Neutrons
- β + emitters (via 511-keV gamma pairs) \rightarrow PET
- γ radiation \rightarrow Prompt Gamma Imaging PGI (γ yield depends on proton energy \rightarrow correlated with depth)

Previous experience

<u>YCCB</u>: Investigation of gamma emission in experimental modelling of hadron therapy

Study dependence $\sigma(\text{depth})$ for key discrete transitions at

- Various beam energies,
- Various phantom materials,
- Various angles.

financed by FNP as POMOST

New project: SiFi-CC

SiPM- and heavy scintillation Fiber-based Compton Camera for on-line monitoring of deposited dose distribution in proton therapy

<u>Goal</u>: development of a method for on-line monitoring of deposited dose distribution in proton therapy

Technique: imaging exploiting prompt gamma rays emitted during irradiation

Technology: Detector based entirely on new, heavy scintillating materials read out by SiPMs; DAQ and (partly) image reconstruction based on FPGA → implantation of HEP technologies to medical application;

<u>Realization</u>: dual-modality setup

- Coded mask CM
- Compton camera **CC**

Financed as SONATA BIS by NCN

Team

post-doc, PI

post-doc

Arshiya Anees Ahmed 2¹

PhD student

Richard

Chomjak 2¹

Ronja

Hetzel 2

post-doc

Jonas

Kasper **№**²

PhD student professor

PhD student

Szymon

student

Świstun 🗗

Wojciech

And we keep looking for more people (students, PhD students)...

http://bragg.if.uj.edu.pl/gccbwiki

Andrzej

Magiera
[™]¹

professor

15.01.2019

8/24

Dual modality - synergy

- Technique widely used in astronomy, also for observation of γ sources
- Technique not tested so far for the purpose of proton therapy
- 2d image
- Much larger statistics compared to single-slit detectors without compromising image resolution

Compton camera CC

- Solution considered and tested for the use in proton therapy
- 3d image
- Problem faced so far: small statistics (efficiency), background from random coincidences
- Proposed solution: detectors of larger efficiency and better time resolution (→electronic collimation)

Dual modality - synergy

Compton camera CC

Common parts:

- Detection technique
- FEE
- DAQ
- \rightarrow expensive hardware

Modality-specific parts:

- Collimation
- Image reconstruction
- \rightarrow mostly software (manpower)

The SiFi-CC setup

- Stacked scintillating fibers
 - Large Z_{eff} and density
 - Large light output O(30000/MeV)
 - Emission spectrum compatible with SiPM
 - Fast rise time and short decay time(s)
 - Attenuation length ~10 cm
 - Small (no?) intrinsic activity
 - Good energy resolution
- SiPMs as size-fitting option
- Aim: high granularity with good energy resolution and fast response (rate capability, electronic collimation)

Tasks

- Optimization of setup design by MC simulations (Geant4) ongoing
- Software development: decoding, calibration, image reconstruction, ... ongoing
- Detector development (tests of materials, coating, coupling, etc.) ongoing

Tasks – tests of detector components

	LuAG:Ce	LYSO:Ce Epic Crystal	GAGG:Ce,Mg C&A Corporation	
Formula	Lu ₃ Al ₅ O ₁₂ :Ce	Lu _{1.8} Y _{0.2} SiO ₅ :Ce	Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce,Mg	
Density [g/cm ³]	6.73	7.1	6.63	
Z _{eff}	63	65	55	
Refraction index	1.84	1.81	-	
Maximum of emission [nm]	535	420	520	
Decay constant [ns]	70 (44%) 1063 (56%)	40-45	45 (58%) 135 (42%)	et al
Photon yield [ph/MeV]	2.5 x 10 ⁴	3 x 10 ⁴	5.6 x 10 ⁴	63 (2)
Photoelectron yield [% of Nal:Tl]	20	75	- K. Ka. Sci.	
Radiation length at 511 keV [cm]	1.3	1.2	- src. Nu	
Attenuation length [cm]	5-30	40	- 7443-1	
Energy resolution at 662 keV [%]	8-8.5	7	5-6	

Microscopic pictures: Axio Observer Z1 Zeiss, bright field mode mgr T. Kołodziej, mgr inż. Z. Baster, Department of Molecular and Interfacial Biophysics of JU

Aleksandra Wrońska

Tasks – tests of detector components

Measurements with fibres on a dedicated test-bench – K. Rusiecka

- Attenuation length
- Light output for 511 keV
- Energy resolution at 511 keV
- Timing properties

Tasks

- Optimization of setup design by MC simulations (Geant4) ongoing
- Software development: decoding, calibration, image reconstruction, ... ongoing
- Detector development (tests of materials, coating, coupling, etc.) ongoing
- DAQ (inc. FEE+slow control) ongoing
- Test measurements (CCB/HIT) in ~2 years

Dreams for test beam time at CCB

- Beam time easier available (T≈150 MeV)
- Beam properties well known (intensity + phase space: distribution of energy, position, angles)
 - Absolute normalization
 - Reliable input for acceptance simulation
- At CCB this is available in treatment rooms, but not in experimental hall
- Maybe a new nozzle for beam pipe?
- ...and a laser positioning system for target alignment?

Beam nozzle and laser system at HIT

Thank you for your attention 🏶

The project is supported by grants: MNiSW no. 7150/E-338/M/2017 and 7150/E-338/M/2018 as well as NCN 2017/26/E/ST2/00618.

Aleksandra Wrońska

