

Coulomb excitations of superheavy nuclei – dreams or research project?

Paweł J. Napiorkowski for the COULEX collaboration

Why COULEX?

SHE structure:

- nuclear deformation (from spherical to prolate and oblate shapes)
- possible triaxiality
 Ćwiok S, Heenen P-H and Nazarewicz W
 Nature 433 (2005) 705
- superdeformation
 Polikanov S M et al, I Sov. Phys. JETP 15 (1962)1016
- collective octupole excitations
 Kondev F G, Dracoulis G D and Kibédi T, Data
 Nucl. Data Tables 103–104 (2015) 50
- high-K states
 Löbner K E G, Phys. Lett. B 26 (1968) 369

Coulomb excitation:

- low energy of interaction (good separation of nuclear surfaces, big distance of closest approach to neglect nuclear interaction)
- high cross-section for the excitation process (depends on nuclear deformation)
- applicable for a low beam intensities
- precision measurements of electric moments in a model independent way
- efficient population of high-spin states to study their spectroscopic properties (including non-yrast states)

COULEX of ²⁴⁸₉₆Cm classic approach

Experiments:

- GSI Darmstadt, Target: ²⁴⁸Cm (250 µg/cm²) Beam ²⁰⁸Pb (5.3 MeV*A) Piercey R B *et al.*, Phys. Rev. Lett. 46 (1981) 415
- $10^{4} + \frac{4}{7} + \frac{700}{500} + \frac{500}{500} + \frac{500}{50} + \frac{500}{50}$

• LBNL

Target: ²⁴⁸Cm (1.18 mg/cm²) Beams: ⁵⁸Ni (4.5 MeV*A), ¹³⁶Xe (4.7 MeV*A) Czosnyka T *et al.*, Nucl. Phys. A458 (1986) 123

Figure 46. Ground-state rotational band of 248 Cm populated in Coulomb excitation using a 208 Pb beam at 5.3 MeV/*u*. Reprinted figure with permission from [329], Copyright (1981) by the American Physical Society.

Piercey R B et al, Phys. Rev. Lett. 46 (1981) 415

COULEX of exotic beams (like "the ²⁵⁴No breakthrough")

- projectile excitation (also inverse kinematics)
- low beam current acceptable (high efficiency of detectors)
- normalisation to target excitations.

Fig. 2. (Color online.) Doppler corrected γ -ray energy spectrum gated on the A=110 group in the CHICO2 spectrum. A number of ¹¹⁰Cd peaks (labeled in green) are visible in additions to the ¹¹⁰Ru γ rays (red).

COULEX @ 2000¹¹⁰Ru per sec (3.9 MeV*A) ANL Caribu, GRETA & CHICO D.T. Doherty *et al.*,**Physics Letters B 766** (2017) 334

Current spectroscopy setup for SHE (e.g. GABRIELA@JINR, Dubna)

- High efficient set of HPGe
- DSSSD front detector (HI and alpha)
- DSSSD side detector (alpha and EC)
- MCP for TOF
- Separator...

A. Yeremin et al., EPJ Web of Conferences 86 (2015) 00065

Inspiration: Slow down beams Coulex setup at GSI

- 2 MSP detectors for tracking of projectiles
- target between MCP and DSSSD (e.g.
- scattering angle from tracking
- similar approach for SHE COULEX setup?
- Limit: SHE beam intensity!

Fig. 3. Schematic setup for the slowed down beam experiment.

F. Naqvi, P. Boutachkov et al., **ACTA PHYS. POL. B 42** (2011) 725

SHEs' Menu

SPIRAL2 & S3:

²⁵⁶Rf ~ 10⁻¹ pps @ 15 pμA

•	²⁵⁴ No	~	10	pps	@	15	рμА

Nuclide	Reaction	Feature	Cross-section (pbarn) (ER)	Rate (h^{-1})	# of events per 7 days
²⁵⁴ No ²⁵⁶ Rf	48 Ca $+^{208}$ Pb 50 Ti $+^{208}$ Pb	<i>K</i> -isomer <i>K</i> -isomer	2×10^{6} 17×10^{3}	6×10^4 550	6×10^{7} 540.000
²⁶⁶ Hs ^{266m} Hs	$^{64}\text{Ni}+^{207}\text{Pb}$ $^{64}\text{Ni}+^{207}\text{Pb}$	ER <i>K</i> -isomer	$15 (^{270}\text{Ds})$ $15 (^{270}\text{Ds})$	0.34	285 12 5
²⁷⁰ Ds ^{270m} Ds	$^{64}\text{Ni} + ^{207}\text{Pb}$	ER K isomor	15 (270 Ds)	0.45	380
²⁶² Sg	$^{64}Ni + ^{207}Pb$	α -decay	$15 (^{270}\text{Ds})$ $15 (^{270}\text{Ds})$	0.22	25
²⁸⁸ 115 ²⁸⁸ 115	2n+Pb $^{48}Ca+^{243}Am$ $^{48}Ca+^{243}Am$	ER L x-rays	10 10	0.01 0.3 1.8	12.5 300 1800

D Ackermann and Ch Theisen Phys. Scr. 92 (2017) 083002

Zielińska M private communication 2016

But in inverse kinematics to have 3 MeV*A: ²⁵⁴No ~ 2 pps @ 2 pµA (Pb beam)

Coulomb excitation (Coulex) provides the most direct measurement of the electric quadrupole moment. Using the inverse kinematics reaction ${}^{48}Ca({}^{208}Pb,2n){}^{254}No$, an energy of $\approx 3.1 \text{ MeV/A}$ results for the residues. At this energy, the Coulomb excitation cross section on a Pb target is of $\approx 27, 11$, 5 b for the 4^+ , 6^+ , 8^+ states, respectively [424]. However, a rather pure ²⁵⁴No beam with a decent intensity of at least 10 ions s^{-1} should be delivered on the secondary target, which can only be achieved using a ²⁰⁸Pb primary beam with an intensity at the $p\mu A$ level, in conjunction with a high transmission separator with inverse kinematics capabilities. As far as we are aware, both requirements are not fulfilled by any existing or foreseen facility (the SC LINAC accelerator of SPIRAL2, Caen should provide in the future a $p\mu A^{208}Pb$ beam but the s^3 electric dipole is not suited for the high electric rigidities associated to inverse kinematics).

Summary

- COULEX of SHE: Fm, No (Z=100,102)
- Detection setup realistic update of existing facilities
- lons rate:
 a few pps @ 3 MeV*A
 on the limit.
- Challenge:
 SEPARATOR for inverse kinematics

NIWERSYTET

RSZAWSKI

ŚLCJ

Figure 25. The SHELS separator at Dubna. Reprinted from [217], Copyright 2015, with permission from Elsevier.