Decay of "stretched" states in the continuum

Natalia Cieplicka-Oryńczak

Institute of Nuclear Physics PAN, Kraków, Poland

Conference "Future of low-energy nuclear physics in Poland - development of national research infrastructure", 14-15 January 2019, Warsaw, Poland

Outline

NEAREST FUTURE

- What is a "stretched" state?
- The first case: ¹³C

FUTHER FUTURE

 Developments at Cyclotron Centre Bronowice (Kraków)

Stretched states in the continuum

Such states are dominated by a single particle-hole component for which the excited particle and the residual hole couple to the maximal possible spin value: $J_{max} = j_p (max) + j_h (max)$

Stretched states in the continuum

The configurational purity – ones of the simplest known nuclear excitations which should provide the most clean information on the details of nuclear force.

The M4 resonance, with its super-pure stretched coupling between the $p_{3/2}$ and the $d_{5/2}$ shells appears to be an ideal candidate to probe and constrain the spin-orbit and tensor components of the **Gamow Shell Model** interaction.

Stretched states in the continuum

The configurational purity – ones of the simplest known nuclear excitations which should provide the most clean information on the details of nuclear force.

The M4 resonance, with its super-pure stretched coupling between the $p_{3/2}$ and the $d_{5/2}$ shells appears to be an ideal candidate to probe and constrain the spin-orbit and tensor components of the **Gamow Shell Model** interaction.

The talk of Y. Jaganathen

The aim is to identify decay from the M4 $1p_{3/2} \rightarrow 1d_{5/2}$ resonance in ¹³C

The aim is to identify decay from the M4 $1p_{3/2} \rightarrow 1d_{5/2}$ resonance in ¹³C

Populated in: **inelastic scattering of protons**, electrons or pions

 $1d_{5/2}$

21.47

Inelastic proton scattering on ${}^{13}C$ $E_p = 135 \text{ MeV}$

Indiana University Cyclotron Facility Magnetic Spectrograph , S.F. Collins et al., Nuc. Phys. A481, 494(1988)

From (π, π') scattering: **21.47 MeV** is $(7/2^+, 9/2^+)$ p and n excitations

Inelastic proton scattering on ${}^{13}C$ $E_p = 135 \text{ MeV}$

Indiana University Cyclotron Facility Magnetic Spectrograph , S.F. Collins et al., Nuc. Phys. A481, 494(1988)

From (π, π') scattering: **21.47 MeV** is $(7/2^+, 9/2^+)$ p and n excitations

Experimental setup - presently available

Experimental setup - presently available

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: No. of channels: Thickness: Full depletion:

50mm x 50mm 32 (16 per side) 1.5 mm 200V

Single side view (www.micronsemiconductor.co.uk)

Experimental setup - presently available

The results from a recent test experiment performed at CCB – the proton energy spectrum

More complex cases and heavier nuclei, where the density of states is larger, may be studied only if the **energy resolution will be improved**

More complex cases and heavier nuclei, where the density of states is larger, may be studied only if the **energy resolution will be improved** 1) New experimental hall at CCB: **Magnetic spectrometer** precise measurement of the excitation energy of the resonance

More complex cases and heavier nuclei, where the density of states is larger, may be studied only if the **energy resolution will be improved**

1) New experimental hall at CCB: Magnetic spectrometer -

> The talks of B. Wasilewska and M. Krzysiek

More complex cases and heavier nuclei, where the density of states is larger, may be studied only if the **energy resolution will be improved** New experimental hall at CCB:
Magnetic spectrometer -

The talks of B. Wasilewska and M. Krzysiek

2) Another possibility: Ge detector for proton energy measurements

Ge detector for scattered protons energy measurement

162.4

54

>5

G. Riepe et al., Nucl. Inst. And Meth. 177, 361 (1980)

150

FWHM

650 keV

200

ENERGY (MeV)

Ge detector for scattered protons energy measurement

Ge detector for scattered protons energy measurement

Spectrum from **1 coaxial Ge detector** (90 mm length, 37 mm diameter)

D. Dorcioman et al., Nucl. Inst. And Meth. 101, 91 (1972)

Ge detector for scattered protons energy measurement

Interesting cases for future studies

- ¹²C: excited states having strong single-particle-hole component appear in ¹²C at energies above 16 MeV
- broad, overlapping nature of M4 excitations in ¹²C better energy resolution needed
- in particular, a resonance with sizable M4 and 2⁻ components has been observed at the 19.5-MeV excitation energy, in measurements at high momentum transfer.

Interesting cases for future studies

M4 resonances in ¹⁴N

M4 resonances in ¹⁶O

J.C. Bergstrom et al., Pys. Rev. C29, 1168 (1984)

C.E. Hyde-Wright et al., Pys. Rev. C35, 880 (1987)

Interesting cases for future studies

Summary

- The precise information will obtained on the decay of the stretched states in p-shell nuclei
- ¹³C, ¹²C, ¹⁴N, ¹⁶O will be studied with presently available and completed devices, as well as with the equipment planned to be developed in future.
- Such information will provide a unique opportunity to constrain the parameters of the **Gamow Shell Model** which can greatly improve its predictive power.

Collaboration

N. Cieplicka-Oryńczak, B. Fornal, M. Kmiecik, A. Maj, M. Ciemała, B. Wasilewska, M. Krzysiek, Ł. Iskra, M. Ziębliński, J. Łukasik, P. Pawłowski, et al.

Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

S. Leoni, A. Bracco, G. Benzoni, S. Brambilla, C. Boiano, F. Camera, F. Crespi, et al.

University of Milan and INFN Sezione di Milano, Milan, Italy

Thank you for your attention!