

# Experimental studies of the strength function below binding energy

<u>M. Krzysiek</u><sup>1</sup>, A. Maj<sup>1</sup>, P. Bednarczyk<sup>1</sup>, M. Ciemała<sup>1</sup>, B. Fornal<sup>1</sup>, M. Kmiecik<sup>1</sup>, P. Napiorkowski<sup>2</sup>, B. Wasilewska<sup>1</sup>

> <sup>1</sup> Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland <sup>2</sup> Heavy Ion Laboratory, University of Warsaw, Poland

*Electric Dipole (E1) Response* (e.g. spherical <sup>140</sup>Ce nucleus)



# Nuclear Resonance Fluorescence (NRF) $(\gamma, \gamma')$

- photons are highly selective to dipole-excited states
- the excitation mechanism is well known and includes exclusively the electromagnetic force
- interacts with whole nucleus

Intrinsic properties like spin, parity or transition strengths can be extracted from the measured quantities in a *model independent way.* 

# How can we study PDR in Poland with particle accelerators?

# Inelastic scattering of protons (p,p')

- ➢ RCNP (Osaka) ← Kraków group involved
- iThemba LABS (Cape Town)
- CCB (Kraków)

# Inelastic scattering of alpha particles ( $\alpha$ , $\alpha$ ')

- ➢ RCNP (Osaka) ← Kraków group involved
- KVI (Groningen)

# Inelastic scattering of heavy ions (<sup>17</sup>0, <sup>17</sup>0')

➤ LNL (Legnaro) ← Kraków group involved

# Neutron-transfer reactions (d,p)

IKP (Cologne)

#### Pygmy states isospin character



# How can we study PDR in Poland with particle accelerators?

#### Inelastic scattering of protons (p,p')

- $\blacktriangleright$  at small forward angles  $\rightarrow$  excitation mechanism similar to photons
- for higher angles both coulomb and nuclear parts play role

#### Inelastic scattering of alpha particles $(\alpha, \alpha')$

- isoscalar probe
- surface interactions

#### Inelastic scattering of heavy ions (<sup>17</sup>0, <sup>17</sup>0')

- predominantly isoscalar probe
- surface interactions

#### Neutron-transfer reactions (d,p)

sensitive to the neutron single-particle structure

# **Isospin properties**



*Gamma – particle coincidence measurements* can be performed at CCB (Krakow) and new cyclotron at HIL (Warsaw) to study stable nuclei response near neutron threshold mainly *Pygmy Dipole Resonance* 



# **Physics cases**

Systematic studies would be needed for selected isotopic chain

#### Motivation for <u>calcium isotopes</u>:

- □ are well studied theoretically
- □ discrepancies observed in PDR region between theory and existing data
- **D** no systematic study for all stable isotopes



I.A. Egorova and E Litvinova, Phys. Rev.C 94, 034322 (2016)

| also well-suited for <b><u>neutron transfer</u></b>                                                    |
|--------------------------------------------------------------------------------------------------------|
| <u>Proposal for HIL: (13C, 12Cγ)</u>                                                                   |
| ${}^{13}C + {}^{40}Ca \rightarrow {}^{41}Ca + {}^{12}C + 3.42 \text{ MeV}$                             |
| $^{13}C + {}^{42}Ca \rightarrow {}^{43}Ca + {}^{12}C + 2.99 \text{ MeV}$                               |
| $^{13}C + ^{43}Ca \rightarrow ^{44}Ca + ^{12}C + 6.18 \text{ MeV}$                                     |
| ${}^{13}\text{C} + {}^{44}\text{Ca} \rightarrow {}^{45}\text{Ca} + {}^{12}\text{C} + 2.47 \text{ MeV}$ |
| ${}^{13}C + {}^{46}Ca \rightarrow {}^{47}Ca + {}^{12}C + 2.33 \text{ MeV}$                             |

Beam energy of >5 MeV/A should be fine

# **Beam energy for inelastic scattering**

#### Alpha particles:

- Γ Most of ( $\alpha$ , $\alpha$ ' $\gamma$ ) experiments **at** ≥**30 MeV/A**
- Successful measurement also for <sup>208</sup>Pb at **12 MeV/A** P. Decowski et al, Phys. Lett. B 101 (1981) 147
  - ➤ Higher energy → higher PDR cross section, but also higher contribution from other excitations

#### Heavy ions:

- Inelastic scattering of <sup>17</sup>O at 20 MeV/A on <sup>140</sup>Ce (LNL Legnaro) M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)
- > DWBA calculations for PDR (total strength) excitation :



**Lower energy** → **lower PDR cross section** but:

- Iower unwanted contribution from IVGDR
- > shape of distribution could be better probed with high angular coverage

# **<u>Particle Detection</u>** $\Rightarrow$ additional to existing KRATTA array



# <u>Gamma Detection</u> ⇒ additional to existing EAGLE array

#### AGATA array: currently 32 HPGe at GANIL

#### Pulse-Shape Analysis (PSA)

Allows to identify the point of  $\gamma$ -ray interaction in the crystal

#### Tracking

Allows to reconstruct the time sequence of interactions and

estimate the  $\gamma$ -ray energy



# Excellent for high-efficiency high-resolution gamma spectroscopy

#### PARIS array: currently 36 phoswiches

- Phoswich: NaI + LaBr<sub>3</sub> or CeBr<sub>3</sub>
- $\circ~$  Clusters of 9 phoswiches  $\rightarrow$  position sensitivity
- $\circ$  Possible  $4\pi$  coverage
- $\circ$  Good timing properties
- $\circ~$  Efficient for high-energy gamma rays



Excellent for high-efficiency  $\gamma$ - $\gamma$  coincidence measurement with high-resolution HPGe

# We propose a campaign of systematic studies in both facilities (CCB and HIL)

As a first case, a good candidates are *stable Ca isotopes* 

# **Isospin properties of PDR**

- (p,p'γ) @ 70-230 MeV at CCB Kraków
- (α,α'γ)
  (<sup>17</sup>0,<sup>17</sup>0'γ)
  @ highest energy available at *new cyclotron of HIL Warsaw*

# **Single-particle structure of PDR**

- > Neutron-transfer reactions e.g.  ${}^{43}Ca({}^{13}C,{}^{12}C\gamma){}^{44}Ca @ > 5 MeV/A at$ *new cyclotron of HIL Warsaw* 
  - $\rightarrow$  comparison with the other measurements (p,p' $\gamma$ ) ( $\alpha$ , $\alpha'\gamma$ ) ( $^{17}$ O, $^{17}$ O' $\gamma$ )

### PDR decay branching to excited states

- $\blacktriangleright$  Very precise measurement of  $\gamma$ -particle coincidence matrix (preferably with magnetic spectrometer)
- $\blacktriangleright$  High-resolution HPGe array (EAGLE or AGATA) + high-efficient PARIS array ( $\gamma$ - $\gamma$  coincidences)

**10 MeV/A** energy should be enough for proposed studies, however **15-20 MeV/A** would be preferable

Post-acceleration system would be a solution

# Thank you for your attention