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Question:

What are the complementary
(to start with: possibly common) elements among:

Isomers? High-energy Excitations? Giant Resonances?

Answer(s):

May depend on who is asked

• Case 1: Isomers can exist at high energies, so are giant resonances
(after Brink hypothesis) – so what the heck! Measure, & that’s it!

Triviality!

• Case 2: All above elements manifest the presence of symmetries,
symmetry breaking, phase transitions, critical points & phenomena.

Fascinating!
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Motto:

Symmetries Are the Tool of Choice

In Our Studies

of Stability of Atomic Nuclei
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K-Isomers and Yrast -Traps

What are they?

... and what are the good reasons to study them
in Poland in the years to come?

Jerzy DUDEK, UdS and UMCS Complementary Mechanisms in Nuclear Structure



K-Isomers and Yrast -Traps

What are they?

... and what are the good reasons to study them
in Poland in the years to come?

Jerzy DUDEK, UdS and UMCS Complementary Mechanisms in Nuclear Structure



K-Isomers and Yrast -Traps

What are they?

... and what are the good reasons to study them
in Poland in the years to come?

Jerzy DUDEK, UdS and UMCS Complementary Mechanisms in Nuclear Structure



Nuclear Spins Aligned With the Symmetry Axis

• We use the mean-field approach
and the fact that in case of an ax-
ial symmetry, say Oz -axis we have

[Ĥ, ̂z ] = 0

• Consequently

Ĥ ϕν,mν = eν,mν ϕν,mν

̂z ϕν,mν = mν ϕν,mν

Projections of Angular Momenta

Single−Nucleon
Alignment

in the Presence of Axial Symmetry
Are Conserved
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Tilted Fermi Surface: Energy Minimisation at Given Spin

−3/2 1/2−1/2 3/2 5/2−5/2 7/2−7/2 9/2−9/2 11/2−11/2−13/2 13/2

M=0

e

m
ν

ν

For the particle-hole excited-states we obtain at the same time the
theoretical energy and theoretical spin:

E ∗ =
∑
p

ep,mp −
∑
h

eh,mh
and I ≈ M∗ =

∑
p

mp −
∑
h

mh
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Irregular Nature of p-h Excitations Generates Yrast Traps

S=9

Energy

TrapsYrast

npSpin = M   + M

Y r a s 
t   

L i n
 e

S=16

E ∗ =
∑
p

ep,mp −
∑
h

eh,mh
and M∗ ≈ Spin =

∑
p

mp −
∑
h

mh
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How Powerful the Idea Is – See Illustration 1

Spins & parities of all experimentally known isomers can be deduced from the diagrams:
4.50 ns at Iπ = 21/2+, 26.8 ns at Iπ = 27/2−, 530 ns at Iπ = 49/2+. Ground state:
Iπ = 7/2− has 38 h half-life. Maximum alignment neutron configurations lead to
Iπ = 9/2− and Iπ = 13/2+ states have lifetimes of 0.35 ps and 21.4 ns, respectively.

Iπ = 19/2− isomer, of 0.37 ns is given by [πd−2
5/2

]0 × [h2
11/2

]max
6 × ν[f 1

7/2
]7/2.

All these structures can be directly deduced from the presented diagrams.

[The lifetimes correspond to the contemporary values taken from Live Chart Table of
Nuclides: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html; theoretical
results presented were first published over 30 years ago, ref. [?].]
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How Powerful the Idea Is – See Illustration 2

• Yrast 147Gd sequence calculated
using the realistic phenomenological
WS-universal mean field approach.

• The energy of each state has
been minimised over several axial-
symmetry deformation parameters.

• Somebody may ask:

How many parameters have been
fitted to obtain this result?
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Or: An attentive listener could say:

This quality of description can be a sign of a powerful modelling:

• Is this just the case of reproduction by fitting?

• Or rather a manifestation of predictive power?

In other words: How many parameters are fitted to spectra?

NONE – no parameter adjusted to the presented data;
This is what is meant as Woods-Saxon Universal mean-field
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Suppose We Give Ourselves the Means For Studying K-Isomers: Part I

What Do We Learn
From Measuring K-Isomers?

• Establish areas of existence of axial symmetry, as opposed to
non-axiality, throughout the Periodic Table. But: Why some
(Z,N)-combinations induce axial symmetry and others do not?

• The axial-symmetry nuclei may choose to rotate collectively

(~I ⊥ Osymmetry) − bands

as alternative to

(~I ‖ Osymmetry) − isomers

or both at the same shape at the same time (in competition).

Why? Which mechanisms cause this or that behaviour?
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Suppose We Give Ourselves the Means For Studying K-Isomers: Part II

What Do We Learn
From Measuring K-Isomers?

• K-isomers may live longer or even much longer compared
with the related ground states → This allows extending the
experimental accessibility to the New Areas of Exotic Nuclei!

• The life-times of K-isomers vary dramatically over many the
orders of magnitude providing precious information about:

– The configuration changes via decay: (np-nh) → (n’p-n’h)

– Signals of spontaneous axial-symmetry breaking [K-mixing]

• By the way: No serious tests of the mean-field theory are
possible without the cross-checking of the above information!
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New Kind of Isomers

or

Isomers generated by the high-rank symmetries

Nickname: High-Rank Symmetries:

Tetrahedral and Octahedral Point-Group Symmetries
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Nuclear Tetrahedral Shapes – 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three
increasing values of rank λ = 3 deformations α32: 0.1, 0.2 and 0.3

Figure: α32 ≡ t3 = 0.1 Figure: α32 ≡ t3 = 0.2 Figure: α32 ≡ t3 = 0.3

Observations:

There are infinitely many tetrahedral-symmetric surfaces

Nuclear ’pyramids’ do not resemble pyramids very much!
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Tetrahedral Bands Are Not Like the Others!
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Schematic Illustration
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• The A1-representation sequence of spin-parity states forms a single parabola

A1 : 0+, 3−, 4+, 6+, 6−, 7−, 8+, 9+, 9−, 10+, 10−, 11−, 2 × 12+, 12−, · · ·

• There belong states of both parities and, in addition, they form doublets, triplets, etc.
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Tetrahedral & Octahedral-Symmetry Signals: Experiment
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Experimental Results [Td -vs.-Oh]

Symmetry Hypotheses:

Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV

A1g → r.m.s.=1.6 keV
A2u → r.m.s.=7.5 keV

8+

9+ 11−

3−

10−

7−
6+

4+

9−

[0+]

10+

6−

Illustration of experimental results, cf. PHYS. REV. C 97, 021302(R) (2018).
Curves represent the fit and are not meant ‘to guide the eye’. Markedly, point
[Iπ = 0+], is a prediction by extrapolation - not an experimental datum.
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Suppose We Give Ourselves the Means For Studying Tetrahedral Bands

What Do We Learn
From Identifying High-Rank Symmetries?

• Exact high-rank symmetries imply Q1 = 0 and Q2=0 →

B(E1) = 0 and B(E2) = 0

• This implies presence of EI ∝ I (I + 1) sequences of excited
isomeric states – connected by neither E1 nor E2 transitions!

• We find parabolic bands of isomers – possibly waiting point
nuclei influencing the interpretation of astrophysical processes!

• Life-times of those states, not known today, may be primarily
given by the E3-decay and/or β-decay→ therefore very long
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For more details about this type of isomers

cf. presentation by Irene Dedes
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High Energy Excitations,

Giant Resonances

Jacobi and Poincaré Shape Transitions
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Jacobi Transitions - Mechanism of Criticality

• Consider an example of Jacobi shape transitions: 46Ti and 142Ba;
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The Physics of Large Amplitude Motion

Or: Nuclear Motion in the Vicinity of Critical Points

• Let us consider the nuclear motion for spins in the vicinity of the
critical (transition-) spin values [the Jacobi transitions to start with]

• The criticality consists in the fact that:

– Nuclear shapes change dramatically, cf. the previous illustrations

– The intrinsic occupancy of nucleonic orbitals changes dramatically

– And yet, the total potential energy varies by a couple of hundreds
of keV only – “dramatic intrinsic changes” cost no energy

• Under these conditions deformations of the actual energy minima
carry no particular physics information ⇒⇒ are next to meaningless

• Consequently, one has to solve quantum mechanical problem of the
nuclear collective motion, find the wave functions and the most prob-
able deformations, root-mean-square deviations (σ-values), etc.
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Posing the Problem of Large Amplitude Motion

• Despite the fact that model used here to parametrize the nuclear
energy is classical – the physical nuclear system is of course quantum

• The corresponding Schrödinger equation has a usual general from

[T̂ + V (α)] Ψn(α) = En Ψn(α) with V (α)↔ VLSD(α)

• Knowing the solutions we can calculate the expected values ᾱλµ
taken as a measure of the most probable deformation and given by:

〈α2
λµ〉 ≡

∫
dαΨ∗

n(α)α2
λµΨn(α) → ᾱλµ =

√
〈α2

λµ〉

• In this way we obtain two, different and non-equivalent realisations
of the description of physical deformations: static and dynamical:

(α20, α22)stat. →→ (ᾱ20, ᾱ22)dyn.
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Shape Uncertainties During Jacobi Transitions

• Results of calculations∗) obtained by solving Schrödinger equation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  10  20  30  40  50  60  70  80  90

α
20

L [ /h]

120Cd

stat
dyn

 0

 0.1

 0.2

 0.3

 0.4

 0  10  20  30  40  50  60  70  80  90

α
22

L [ /h]

120Cdstat
dyn

• To obtain the results above we have introduced dispersion coeffs.

σ20 ≡
√
〈α2

20〉 − 〈α20〉2 and σ22 ≡
√
〈α2

22〉 − 〈α22〉2

• Positions of the squares are given by
√
〈α2

20〉 and
√
〈α2

22〉. The bars
represent the intervals of the size (±σ) as the quantitative estimates

∗)Collaboration with K. Mazurek and D. Rouvel
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Determining the GDR Profile Gives Most Probable Shape

• Experiment vs. modelling with high-temperature thermal shape-
fluctuations; Splitting of the GDR allows to deduce deformation

• Experimental results from A. Maj et al., Nucl. Phys. A731, 319 (2004)
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Dramatic Shape Changes Cost Nearly No Energy

Shape at β2 =0.6 Shape at β2 =0.9

Shape at β2 =1.2 Shape at β2 =1.5
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Suppose We Give Ourselves the Means For Studying Giant Resonances

What Do We Learn
From the GDR Shape-Probability Profiles?

• By examining the Coriolis splitting of the GDR profiles we
learn experimentally about shape evolution with spin and ex-
citation energy as well as about the most probable shapes

• Establishing the critical spin values for the Jacobi shape
transitions we get instructed how to optimise the population
conditions for the hyper-deformed states an elusive subject to
date

• From competition between Jacobi and Poincare shape tran-
sitions we control the fission fragment mass distributions with
increasing spin – important nuclear structure information
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Final Remarks about a Special Edition
of Potential Interest

When discussing future of nuclear physics
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55 Articles by Experts in Our Field Summarising the Past and Projecting into Future
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