

Opportunities for PARIS at ALTO facility

Iolanda Matea (IPN-France) – PARIS Collaboration Meeting, 25-26 January 2018, Warsaw

ALTO Facility (for PARIS ...)

and

PDR and beta-decay

ALTO FACILITY: STABLE IONS BEAMS

Standard Tandem beams

SPLIT-POLE

e-LINAG

BACC

ORGAM

- from H, ³He, ⁴He, ..., ¹⁴C, ... up to ¹²⁷I
- Term. V: from < 1 MV up to 14.5 MV
- Beam pulsing: width 1 2 ns; rep. rate 200 ns or more

target

- new ions source purchased for higher intensity of difficult beams

PARRNe

AGAT

BEDO

TETRA

Carburation lab

(Mg, Ca)

TANDEM

Lithium (Boron) Inverse Cinematiques ORsay Neutron source

ORSAY

ALTO

THE ALTO FACILITY: RADIOACTIVE IONS BEAMS

First photofission ISOL facility in the world (~10¹¹ f/s)

- **50 MeV & 10 μA** e⁻ beam
- UCx target (~70g, ~140 pellets)
- Z selection with : Surface/LASER ion source
- Mass Selection with PARRNe magnet -> mono-isotopic achievable

Production yields projections for an universal FEBIAD source

ALTO Facility (for PARIS ...)

and

PDR and beta-decay

Experimental and theoretical PDR work : concentrated around proton closed shells : Z=20, 28, 50, 82 (recent review: D. Savran et al. / PPNP 70 (2013) 210-245)

<u>Different (complementary) experimental</u> techniques : NRF, relat COULEX, hadron scattering, ion induced reactions (probing also the PDR structure)

What about PDR studies along closed neutron shell isotonic chains?

Limited to stable nuclei !

Theoretical calculations: N. Tsoneva et al, Journal of Physics G: Nuc. Part. Phys. 35 (2008)

Remark :

along an isotonic chain you become faster exotic that along an isotopic chain

 \rightarrow experimentally challenging ...

But this also opens the Q-beta window and lowers the Sn !

N=50 : R. Schwengner et al, PRC87 (2013)

N = 82 : D. Savran et al, PRC84 (2011)

Result: high energy exited states are populated (PDR region ~ 7-10 MeV) and some high energy γ transitions compete with n-decay (signature of E1 type)

Mother	J^{π}	Daughter	S_n [keV]	Q_{β} [keV]	$P_{\beta n} [\%]$
⁴⁸ K	(2^{-})	⁴⁸ Ca	9945	12090	1.1
⁵⁰ K	$(0^-, 1^-, 2^-)$	⁵⁰ Ca	6353	14220	22.5
⁸⁴ Ga	(0^{-})	⁸⁴ Ge	5243	12900	42.5
⁸⁶ Br	(1^{-})	⁸⁶ Kr	9857	7626	
⁹⁶ Y	0-	⁹⁶ Zr	7856	7096	
⁹⁸ Y	$(0)^{-}$	⁹⁸ Zr	6415	8824	0.33
¹³⁰ In	1(-)	¹³⁰ Sn	7596	10249	0.92
¹³⁶ I	(1^{-})	¹³⁶ Xe	8084	6930	
¹⁴⁰ Cs	1-	¹⁴⁰ Ba	6428	6220	
^{142}Cs	0-	¹⁴² Ba	6181	7325	0.09
^{144}Cs	1(-)	¹⁴⁴ Ba	5901	8500	2.9
¹⁴⁶ Cs	1-	¹⁴⁶ Ba	5495	9370	12.4

Ingredients:

- High Qbeta window
- Daughter Sn in the Qbeta window

- J^{π} selection rules should allow for GT decay to states connected by E1 to GS (matching B(GT) - B(E1) ...)

Example 1: 136 I \rightarrow 136 Xe(stable), N=82

(Scheck et al, PRL116 (2016)

Red – transitions seen in both 12

Example 2 : ALTO-RIB experiment ⁸³Ga: can GT trigger low-lying nuclear dipole oscillations ?

- a) GT decay create a depletion of neutron density in the core
- b) The excited ⁸³Ge states can then decay via E1 γ emission with a «PDR-like» transition density 13

N = 50 : dipole strength distribution studies towards neutron rich isotopes

Keep in mind :

Beta decay alone can't answer to the question : "PDR or not PDR ?" ...

Need to populate the PDR states by other mechanisms (near to far future ...) 14

SETUP @ ALTO:

- Tape implantation
- Beta detection : plastic
- 3 PARIS clusters
- 3 high volume Ge + 1 Clover

