# **Control of PARIS tests in Mumbai** V. Nanal (TIFR) on behalf of PARIS- India



Dr. Chandan Ghosh Dr. Balaram Dey



- · Detailed characterization of LaBr3-NaI ( $E \sim 34$  MeV)
- In beam tests with V1730 digitizer
- · Neutron response study
- Study of CeBr3-NaI

C. Ghosh *et al* 2016 *JINST* **11** P05023

B. Dey *et al* arXiv:1708.06346, to appear in Advanced detectors for Nuclear, High energy and Astroparticle physics (Springer Nature Singapore Pvt Ltd, 2018)

## Source and Reaction Details

| Source    | Eγ (MeV)     |
|-----------|--------------|
| 22Na      | 0.511, 1.275 |
| 137Cs     | 0.662        |
| 54Mn      | 0.835        |
| 60Co      | 1.173, 1.332 |
| 241Am-9Be | 4.439        |
| 239Pu-13C | 6.130        |

| Reaction               | Eγ (MeV)                        | Place of Expt.                    |
|------------------------|---------------------------------|-----------------------------------|
| 11B(p,γ) at<br>163 keV | 4.439, 11.680                   | ECR lab, TIFR                     |
| 11B(p,γ) at<br>7.2 MeV | 4.439, 5.020,<br>18.118, 22.557 | Pelletron Linac<br>Facility, TIFR |

Cosmic Ray : 34 MeV in LaBr3(Ce)

#### **Set-up Pictures**







#### **Electronics set up: Digital & Analog**

## **Phoswich pulses**

![](_page_3_Figure_1.jpeg)

- ROOT based program is developed for analyzing data.
- > LAMPS acquisition-cum-analysis software is also used for analysis.

## Linearity Studies with Different Voltage Dividers

Very high light yield of LaBr3(Ce)

(63 photons/keV $\gamma$ ) leads saturation of PMT response.

Voltage divider circuits for PMT :

- 1. Hamamatsu E5859-15 (B1)
- 2. Modified E5859-15 (B2)
- 3. Voltage Divider made by Strasbourg group (B3)

![](_page_4_Figure_7.jpeg)

#### Linearity upto 22.5 MeV with B3 divider

Initial PMT supply voltage : Best linear voltage from ECR experiment.

![](_page_5_Figure_2.jpeg)

#### Count Rate Effect with B3 Voltage Divider

![](_page_6_Figure_1.jpeg)

#### **Absolute scale GEANT4 Simulation**

![](_page_7_Figure_1.jpeg)

Neutron background leads to discrepancy in AmBe source spectrum

#### **Geant4 Simulation**

![](_page_8_Figure_1.jpeg)

C Ghosh et al., JINST P05023 (2016)

#### **Energy Resolution**

![](_page_9_Figure_1.jpeg)

LaBr3 resolution at 4.4 MeV  $\sim 2.8\%$  and at 11.7 MeV  $\sim 2.3\%$ 

#### **Time Resolution**

![](_page_10_Figure_1.jpeg)

## Efficiency of LaBr3 up to 4.4 MeV

![](_page_11_Figure_1.jpeg)

### Construction total energy spectrum

![](_page_12_Figure_1.jpeg)

$$Q_{short} = q_1(E_1)cos\theta_y + q_2(E_2)sin\theta_x$$
$$Q_{long} = q_1(E_1)sin\theta_y + q_2(E_2)cos\theta_x$$

- Calibration of q1 and q2
- $\succ E_{tot} = E_1 + E_2$

$$q_{1}(E_{1}) = k \times (Q_{short} cos \theta_{x} - Q_{long} sin \theta_{x})$$
$$q_{2}(E_{2}) = k \times (-Q_{short} sin \theta_{y} + Q_{long} cos \theta_{y})$$

$$k = \frac{1}{\cos(\theta_y + \theta_x)}$$

**Intrinsic Broadening of AmBe Source** *demonstration of phoswich resolution* 

![](_page_13_Figure_1.jpeg)

The broadening due to source recoil ~ 2%

C. Ghosh et al 2016 JINST 11 P05023

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

## In-beam test of PARIS mini-cluster (2x2) @ Mumbai

![](_page_16_Picture_1.jpeg)

Two LaBr3-NaI phoswich & Two LaBr3 (2"x2"x2") DAQ: V1730 (16 Ch, 14 bit, 500 MS/s, 2 Vpp) with digiTES-4.2.

# Test Experiment Details

- Test carried out as a satellite in the experiment to study Jacobian shape transitions using 16O (Elab = 125 MeV) on 12C target at PLF, Mumbai
- With V1730 digitizer and digiTES-4.2.6, for each event Time stamp,
  PSD [(QL-QS)/QL] and Energy were recorded

![](_page_17_Figure_3.jpeg)

- TOF measured w.r.t. beam pulse (RF).
- The RF (~4.68MHz) was filtered using 'OR' output of V1730 with suitable masking for inputs.
- Filtered RF was recorded as input

![](_page_18_Figure_0.jpeg)

#### Neutron response study

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

Fig. 2 Time-of-flight spectrum (left panel) and PSD spectrum (right panel) using <sup>252</sup>Cf source

Relative neutron Fraction : fi= Ni/Ntot

- N1 energy only in LaBr3,
- N2 Energy in both LaBr3 and NaI,
- N3 Energy only in NaI

f12=N1+N2 (~primary interaction in LaBr3)

![](_page_20_Figure_5.jpeg)

**Fig. 3** Relative detection efficiency of neutrons in the phoswich detector (see text for details). Filled symbols represent the experimental data  $(^{252}Cf)$  and simulations are shown by open symbols

Discrepancy with simulation for low energy neutrons

· For En > 3 MeV

~ 90-95% neutrons have primary interaction in LaBr3  $n-\gamma$  discrimination possible even at 15 cm

• For slower neutrons (E < 3 MeV), TOF > 6ns @15 cm and n- $\gamma$  discrimination possible in NaI .

At 15 cm flight path, overall ~ 90% neutron rejection is feasible for PARIS phoswich cluster

#### **Tests of CeBr3-Nal phoswich**

![](_page_22_Figure_1.jpeg)

FIG. 2: A PSD spectrum with  $^{60}\mathrm{Co}$  source in Detector D.

#### TABLE I:

| ] | Resolution | n of Cel         | $Br_3$ and $I$           | NaI(Tl) crystal | $\mathbf{s}$ . |
|---|------------|------------------|--------------------------|-----------------|----------------|
|   | Detectors  | Mea              | $\operatorname{sured}^a$ | Peak to Valley  | Y              |
|   |            | Resolu           | tion $(\%)$              | ratio           |                |
| _ |            | ${\rm CeBr}_{3}$ | NaI(Tl)                  |                 |                |
|   | A          | 4.9              | 7.6                      | 29.3            |                |
|   | В          | 5.1              | 8.4                      | 28.9            |                |
|   | С          | 5.9              | 8.2                      | 23.6            |                |
|   | D          | 4.7              | 8.0                      | 30.3            |                |

<sup>*a*</sup>Error in resolution is  $\sim 0.5\%$ .

![](_page_22_Figure_6.jpeg)

FIG. 3: PSD gated spectra of  $^{60}$ Co and  $^{137}$ Cs in individual crystals (a) CeBr<sub>3</sub> (b) NaI(Tl) for detector D.

![](_page_22_Figure_8.jpeg)

FIG. 4: A comparison of  $\gamma$ -ray spectra using CeBr<sub>3</sub>-NaI(Tl) and LaBr<sub>3</sub>(Ce)-NaI(Tl) detectors.