Characterisation of a 2X2 Array of Large Square Bars of LaBr₃:Ce Detectors With γ-Rays up to 22.5 MeV

Indranil Mazumdar Department of Nuclear & Atomic Physics TIFR, Mumbai

The Annual PARIS Collaboration Meeting 2018 Heavy Ion Laboratory, Warsaw 25th – 26th Jan. 2018

raison d'etre of the talk

Dynamics of Hot & Rotating Nuclei at Low-Medium Excitation Energy

Primary motivations:

Nuclear structure and structural evolution with T, J GDR decay studies, Search for IVGQR

Reaction dynamics below and above barrier

Fusion-evaporation reaction Fusion-fission reaction

HIGRASP at IUAC, Delhi I.Mazumdar et al. NIM A417

7 Elements Nal array, TIFR, Mumbai

The 4π <u>Sum</u>-Spin Spectrometer at TIFR *Kumar, Mazumdar, Gothe, NIM-A 611 (76) (2009)* Hybrid Recoil Analyzer (HYRA) at Inter University Accelerator Centre, Delhi Coupled with the TIFR 4π Sum-Spin Spectrometer

•*GDR decay from* ¹⁹²*Pt*, ¹⁹⁶*Hg*, ¹⁴⁴*Sm*

• ER cross section, spin distribution for

 $({}^{31}P+{}^{170}Er), ({}^{30}Si, {}^{31}P+{}^{170}Er), ({}^{28}Si+{}^{176}Yb)$ $({}^{48}Ti+{}^{150}Nd), ({}^{19}F, {}^{16}O+{}^{197}Au)$

- Phys Rev. C 88 024312 (2013)
- Phys Rev C 88 034606 (2013)
- Nucl. Phys. A 890, 62 (2012)
- Jour. Phys. G 41 (2014)
- EPJ Web of Sc.(2011,2013)
- Phys. Rev. c 95, 024604 (2017)
- Phys. Rev. C 96, 34613 (2017)

Studying LaBr₃Ce detectors

- Small 1"X1" cylindrical detectors
- Small 2"X2" cylindrical detectors
- Large volume 3.5"X6" cylindrical detector
- Large volume square bars (2"X2"X8")
- Array of large volume square bars
- A combo arrangement of LaBr+NaI(Tl)
- **LaBr₃:Ce-NaI Phoswich**
- PARIS phoswich detectors

Complete characterisation

- Energy & Timing resolution
- Linearity
- Uniformity & homogeneity
- Internal activity
- Absolute efficiencies (PP & TDE)
- *Response* (662 keV 30 MeV)
- Efficiency corrections
- Performance with SiPM
- 1. G. Anil Kumar, Mazumdar, Gothe, Nucl. Instr. Meth. A 609 (2009)
- 2. G. Anil Kumar, Mazumdar, Gothe, Nucl. Instr. Meth. A 610 (2009)
- 3. G. Anil Kumar, Mazumdar, Gothe, Nucl. Instr. Meth. A 611 (2009)
- 4. Mazumdar, G. Anil Kumar, Gothe, Manchanda, Nucl. Instr. Meth. (2010)
- 5. Mazumdar, Gothe, Chavan, Yadav, G. Anil Kumar, Nucl. Inst. Meth.A 705 (2013
- 6. M. Dhibar, D. Mankad, I. Mazumdar and G. Anil Kumar. Applied Radiation and Isotopes 118, 32 (2016).
- 7. M. Dhibar, I. Mazumdar, G. Anil Kumar, S. M. Patel, P. B. Chavan. Nuclear Inst. and Methods in Physics Research, A 883 (2018) 183

¹³⁷<u>Cs, ⁶⁰ Co, ²²Na, ¹³³ Ba, ⁵⁷Co, ¹⁴⁷ Pm, ⁶⁵Zn, ¹⁵² Eu, ⁴⁵Ca.</u>

3.5"× 6" cylinder

Reactions:

 $E_p = 7.2$ MeV proton beam from TIFR Pelletron

Mazumdar et al. Nucl. Instr. Meth. A (2013)

Taming the non-linearity up to 22.5 MeV

Characterisation of 2"X2"X8" bar & 2x2 array Dhibar, Mazumdar et al. NIM-A (2018)

Uniformity

Internal activity

<u>15.1 MeV from ¹²C(*p*,*p*'),γ reaction</u>

Dhibar, Mazumdar et al., NIM-A (2018)

Linearity up to 22.5 MeV

Studying the Performance of LaBr₃:Ce Crystals Coupled with SiPm

Studies with SiPm

Photo Multiplier Tube	SiPM
High Biasing Voltage	Low Biasing Voltage
Large Size causes difficulty when using	Small Size covers small detector area
Sensitive to Magnetic field	Insensitive to Magnetic field
Reasonable cost	High Cost compared to PMT

- SiPM is a semiconductor device made up of avalanche photo diode pixel connected in parallel.
- Each APD is an individual photon counter and sum of all APD pixels is output of SiPM.
- APDs are operated in Geiger Mode

SiPM - MicroFB 60035

- Fast Rise Time, Blue Sensitive,
- Dimension: 7mm X 7mm
- Active Area: 6mm X 6mm
- Peak Wavelength: 420nm
- Spectral range: 300nm to 800nm
- No of Pixels: 18980
- Breakdown Voltage: +24V
- Overvoltage range: 0-5V

2" X 2" X 8"

We plan to augment this array

Some Physics Results

Excitation function of the total ¹¹C production cross section via The ¹⁰B(p, γ)¹¹C reaction.

<u>*y*-Rays measured using large square bars</u> <u>of LaBr₃:Ce</u>

Measurements done at TUNL, Duke Univ.

Astrophysical S factors for the ${}^{10}B(p,\gamma){}^{11}C$ reaction.

Kafkarkou et al., Phys. Rev. C 89 (2014)

Cross section and S-factor $d + p \rightarrow {}^{3}He + \gamma$

Motivation

The measurement of ${}^{12}C(p,p'\gamma)$ cross section is important for both fundamental and applied nuclear physics No optical model is successful in reproducing the data at low energy (5-30 MeV) Structure of excited states and their decay to lower states.

Nuclear Structure:

- Very little data available for 12.7 and 15.1 MeV states
- > No $(p, p'\gamma)$ data for 9.64 MeV state!

Astrophysical Importance:

γ-ray lines observed during solar flares have strong contribution for 15.1 MeV & 4.43 MeV line.

Ramaty et al., APJ, 229, 1979; Murphy et al., APJ Supplement Series, 215, 2014

State (MeV)	Beam Energy (MeV)	Angle(θ)
4.44	8	60°, 75°, 90°, 105°, 120°, 135°
	8.5	60°, 75°, 90°, 105°, 120°, 135°
	9	60°, 75°, 90°, 105°, 120°, 135°
	9.5	60°, 75°, 90°, 105°, 120°, 135°
	10	60°, 75°, 90°, 105°, 120°, 135°
	11	60°, 75°, 90°, 105°, 120°, 135°
	12	60°, 75°, 90°, 105°, 120°, 135°
	13	60°, 75°, 90°, 105°, 120°, 135°
	14	60°, 75°, 90°, 105°, 120°, 135°
9.64	14	60°, 75°, 90°, 105°, 120°, 135°
	15	60°, 75°, 90°, 105°, 120°, 135°
	16	60°, 75°, 90°, 105°, 120°, 135°
	17	60°, 75°, 90°, 105°, 120°, 135°
	18	60°, 75°, 90°, 105°, 120°, 135°
12.7	15	60°, 75°, 90°, 105°, 120°, 135°
	16	60°, 75°, 90°, 105°, 120°, 135°
	17	60°, 75°, 90°, 105°, 120°, 135°
	18	60°, 75°, 90°, 105°, 120°, 135°
15.1	17	60°, 75°, 90°, 105°, 120°, 135°
	18	60°, 75°, 90°, 105°, 120°, 135°
	19.5	60°, 75°, 90°, 105°, 120°, 135°
	20	90°,
	21	90°,
	21.5	90°,
	22	90°,

Total γ -Cross sections and Branching ratios

9.64 MeV σ _{pp} '	70 mb ± 0.2	HARADA <i>et al.</i> , Journal of Nuclear Science and Technology, 36(4), 313, 1999.
12.7 MeV σ _{pp} '	15 mb ± 1.1	Daehnick et al., Phys. Rev., 133, B934, Feb 1964.
15.1 MeV σ _{pp} '	8.3 mb ± 1.2	Warburton <i>et al.</i> , Phys.Rev.128, 4, 1962.

 M. Dhibar², A.K. Gourishetty², P.B. Chavan¹, S. M. Patel¹, A.K. Rhine Kumar¹, C.D. Bagdia¹, L.C. Tribedi¹,

S.P. Weppner^{1,3}

1 TIFR, Mumbai,

2 IIT-Roorkee

3 Eckerd College, Fl.

Thank You