Opportunities for PARIS @ FLNR JINR Dubna

Yuri Penionzhkevich, Yuri Sobolev, Flerov Laboratory JINR Dubna

FLNR's basic directions of research:

- Heavy and superheavy nuclei
- · Light exotic nuclei

- Radiation effects and physical groundwork of nanotechnology
- Accelerator technologies

Commissioned: Modernized: Reconstruction: 1978 1996 2020-2023 (plan) **Tasks:**

Stand-alone mode:

- Synthesis of superheavy elements (SHE)
- Chemistry of SHE
- Nuclear & laser spectroscopy
- Nuclear reactions: fusion, fusion-fission & quasi-fission, multi-nucleon transfer reactions
- Applied research

Post-accelerator mode:

- Reactions with exotic nuclei
- Structure of light exotic nuclei

U-400 ACCELERATOR COMPLEX

NUCLEAR SPECTROSCOPY AND REACTION'S MECHANISMS

lon	lon energies [MeV/A]	Output intensity [pps]	Main para	ameters		
1602+	5.7; 7.9	3×1013	Energy range	3÷21 MeV/A		
1803+	7.8: 10.5:	2.6×1013	K factor max.	650		
	15.8		Pole diameter	4 m		
40Ar4+	3.8; 5.1	1×1013	Magnet weight	2100 t		
48Ca5+	3.7; 5.3	7.2×1012	Magnet power	850 kW		
48Ca9+	8.9; 11; 17.7	6×1012	Vacuum	10-7 Torr		
50Ti5+	3.6; 5.1	2.4×1012				
58Fe6+	3.8; 5.4	4.2×1012				
84Kr8+	3.1; 4.4	1.8×1012				
136Xe1 4+	3.3; 4.6; 6.9	4.8×1011				
160Gd1 9+	5.5	6×1010				
209Bi1 9+	3.4	6×1010	(GFRS-I)			
Separator for neavy Elements Spectroscopy (SHELS)						

- Radio-chemical setups
- Double-arm time-of-flight spectrometer (CORSET)
- Magnetic Analyzer of High Resolution (MAVR)

DOUBLE-ARM TIME-OF-FLIGHT SPECTROMETER (CORSET)

Study of the mechanisms of heavy-ion-induced reactions (fusion-fission, quasifission and deep inelastic processes)

Time resolution	150-180 ps
ToF base	10-30 cm
ToF arm rotation range	15°-165°
Solid angle	100 -200 msr
Angular resolution	0.3°
Mass resolution	2-4 u
Energy resolution	1%

Focal plane detector system

MAGNETIC ANALYZER OF HIGH RESOLUTION (MAVR)

Configuration: QQDD

dispersion in the focal plane	1.9 cm/%
∆p/p	10 %
Βρ	1.5 Tm
Solid angle	30 msr
Energy resolution $\Delta E/E$	5 10-4

separation, detection and identification of nuclear reaction products in wide range of masses (5÷150) and charges (1÷60)

U-400M ACCELERATOR COMPLEX

Beams (examples)

1991 Commissioned: Modernized: Reconstruction:

1996 2019 (plan) Tasks:

Stand-alone mode⁻

- Properties and structure of light exotic nuclei
- Reactions with exotic nuclei
- Decay properties of nuclei at drip lines
- Mass & laser spectroscopy of heavy nuclei
- Applied research

Driving accelerator mode:

Production of beams of radioactive nuclei

		Beam	E [MeV/A]	Output intensity
Main par	ameters			[իիշ]
Energy range	5÷10 & 25÷55	7Li	35	6×1013
	MeV/A	11B	32	4×1012
K factor max.	550	15N	50	2×1012
Pole diameter	4 m	40Ar	40	1×1012
Magnet weight	2300 t	84Kr	27	2×1010
Magnet power	1000 kW	12220	25	1×100
Vacuum	10-7 Torr	13276	20	1×109
		48Ca	4.5-9	3×1012
		84Kr	4.5-9	1×1011
		132Xe	4.5-9	1×1010
		209Bi	4.5-9	1×1010

Experimental setups (high-energy mode):

- ACCULINNA-1 fragment separator
- ACCULINNA-2 fragment separator
- COMBAS fragment separator
 - Experimental setups (low-energy mode):
- Mass Analyzer of SuperHeavy Atoms (MASHA)
- Gas-cell based Laser ionization Setup (GaLS)
- Correlation setup for the reaction products registration (CORSAR)

http://aculina.jinr.ru/acc-2.php

Experiments with radioactive beams with Z≤36					
	RIB*	Intensity, pps (at 1 pμA)	Energy, MeV/A		
	6He	4x107	22		
	6He	1x107	13		
	8He	8x104	23		
	11Li	7x103	33		
	14Be	2x103	35		
	15B	4x105	32		
4	16C	2x107	29		
2	18C	1x104	25		
þ	240	2x103	23		
	8B	2x106	16		
	130	1x106	24		
	17Ne	2x106	30		
	24Si	7x103	12		
	28S	1x103	38		

* - expected RIB's characteristics at ACCULINNA-2; RIB's intensities for ACCULINNA-1 are lower by factor of ~20.

CORRELATION SETUP FOR THE REACTION PRODUCTS REGISTRATION (CORSAR)

Main parameters

transportation of reaction products	aerosol jet and magnetic tape
cross section limit	10 μb
half-life limit	5 sec
registration	β - γ - γ coincidence method

Purpose:

identification and investigation of the properties of neutron-rich heavy nuclei in the region of nuclei near N = 126

FRAGMENT SEPARATOR COMBAS

Main parameters

M	Bρmax, Tm	4.5
-	Solid angle(maximum), msr	6.4
	Momentum acceptance (maximum), %	20
	Momentum dispersion (in the linear approximation), cm/%	1.53
?	Momentum resolution, FWHM	4360
	Full length of the channel. m	14.5

KNOWLEDGE BASE ON LOW-ENERGY NUCLEAR PHYSICS

Unified system of:

- Numerous modern algorithms of nuclear dynamics;
- Databases on nuclear properties and cross sections of nuclear reactions

GAS-CELL BASED LASER IONIZATION SETUP (GaLS)

Laser system specifications:

Туре	Output power Main&harmonic, W, (2nd),{3rd, 4th}	Puls frequenc Hz	Puls length, y, ns	Wave length, nm
Dye laser	3, (0.3)	104	10-30	213-850
Ti:Sapphir	2, (0.2), {0.04}	104	30-50	680-960
Nd-YAG Matisse system	(80-100), {20-40}	104	10-50	532
Ring dye	0.8-6	CW	CW	540-900
Ti:Sapphir	0.8-6.5	CW	CW	700-1000
	Mass-separator	specifica	ations:	
	 Bending radii 	us	1 m	
	· Bending angl	е	900	
	· Rigidity of ab	out	0.5 T.m	
	· Dipole gap		60 mm	
	· Mass resolut	ion	1400	
	· Focal plane l	ength:	~1 m	
	• Weight:		1800 ka	

synthesis and study of properties of heavy neutronrich nuclei produced in multinucleon transfer reactions

• Motivation to measure $\sigma R(E)$

Total Reaction Cross Sections in CEM and MCNP6 at Intermediate Energies

Leslie M. Kerby^{a,b}, Stepan G. Mashnik^a

^aLos Alamos National Laboratory, Los Alamos, NM 87545, USA ^bUniversity of Idaho, Moscow, ID 83844, USA

$$I = I_0 e^{-\sigma_R(E_\alpha)N} \quad \sigma_R(E)N <<1 \quad \sigma_R(E)N = (I_0 - I) / I_0$$

26.01.2018

TRCS are including $\ \underline{\forall}$ INELASTIC processes

1- simultaneous measurement of I0 ensembles of beam particles which hit target μ I passed without interaction "attenuation method"

2- simultaneous measurement of I0 ensembles of beam particles and the corresponding reaction events (I0-I) "transmission method"

[T.J. Gooding, Proton Total Reaction Cross Sections at 34 MeV, Nucl. Phys. Vol. 12, Issue 3, 2 July 1959, P. 241–248;] и Айсберга [R. M. Eisberg, Proton total reaction cross sections at 62 MeV, Florida Optical Model Conference Report, (1959);] "attenuation method"

[*E.J. Burge, The total proton reaction cross section of carbon from 10—68 MeV by a new method, Nucl. Phys. Vol.* **13**, *Issue 4, 2 November 1959, P. 511–515* **"transmission method"**

Fig. 2. Upper: scheme of the direct method. The reaction probability is the number of inelastic events divided by the total number of events. Lower: ET^2 spectrum, (a) Unconditioned detector/larget spectrum, (b) anticonicidence spectrum with 4π y-array, (c) coincidence spectrum with 4π y-array, (c) coincidence spectrum with 4π y-array, (c) coincidence spectrum on the 4π -y-array, (c) coincidence spectrum on the 4π -y-array (c) coincidence spectrum on the 4π -y-array.

ISSN 1063-7796, Physics of Particles and Nuclet, 2017, Vol. 48, No. 6, pp. 922–926. © Pletades Publishing, Ltd., 2017. Original Russian Text © Yu.G. Sobolev, Yu.E. Penionzhkevich, D. Aznabaev, E.V. Zemlyanaya, M.P. Ivanov, G.D. Kabdrakhimova, A.M. Kabyshev, A.G. Knyazev, A. Kugler, N.A. Lashmanov, K.V. Lukyanov, A. Maj, V.A. Maslov, K. Mendibayev, N.K. Skobelev, R.S. Slepnev, V.V. Smirnov, D. Testov, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 6.

PECULIARITIES IN TOTAL CROSS SECTION OF REACTION WITH WEAKLY BOUND NUCLEI 6He, 6Li, 9Li WITH Si

Results and resume:

Two peculiarities of σR(E) can be observed:
1 peculiarity is the increased cross section for 6He+Si with respect to 4He+Si in the whole studied energy range.
2 peculiarity is the local increase of σR values in the form of a bump in a limited energy range 10÷30 AMeV for the case of 9Li+Si.

The 1 peculiarity may be explained by the larger size of the 6He nucleus, while the 2 peculiarity may be a manifestation of the dynamic effects associated rearrangement of external weakly bound nucleons or their clusters in the 9Li.

28Si		29Si		30Si		31Si	
Eγ [keV]	Ιγ %						
1778,97	100	1273,36	100	2235,23	100	0752,22	100
2838,29	100	2028,09	100	1263,13	100	1694,87	100
3200,7	100	2425,73	100	1534,12	100	2316,80	100
4496,92	100	1595,5	100	1552,36	100	2787,9	100
4910,8	100	2806,3	100	1732,7	100	1438,5	100
5107,6	100	2712,8	100	2595,39	100	2780,56	100
5600,4	100	2051,9	79	4810,0	100	3629,90	100
6877,0	100	1038,90	21	3498,33	98	1564,2	22
5098,8	39	1152,57	17,6	1311,80	89,7	0662,19	18

57

ISSN 0020-4412, Instruments and Experimental Techniques, 2012, Vol. 55, No. 6, pp. 618-623.
Pleiades Publishing, Ltd., 2012.
Ortisinal Russian Text © Yu.G. Sobolev. M.P. Ivanov. Yu.E. Penionzhkevich, 2012, published in Priborv i Tekhnika Eksperimenta, 2012, No. 6, pp. 13-19.

A Setup for Measuring Total Cross Sections of Nuclear Reactions

Yu. G. Sobolev, M. P. Ivanov, and Yu. E. Penionzhkevich Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow oblast, 141980 Russia e-mail: sobolev@nrmail.jinr.ru Received December 20, 2011

Abstract—An experimental technique and a setup for measuring the energy dependence of the total cross sections of nuclear reactions with stable and radioactive nuclear beams at kinetic energies approaching the Coulomb barriers are described. The modified transmission method, complemented with γ -ray detection in the 4π geometry and pulse-shape discrimination of particles by a semiconductor detector, is used.

RESPONSE FUNCTION INVESTIGATION

OF 4π γ-SPECTROMETER "MULTI" BY GEANT4 MONTE-CARLO CODE

I. Sivacek¹, Yu. G. Sobolev², A.V.Ashmanov³, N. A. Lashmanov^{2,3}

¹Nuclear Physics Institute, ASCR, Řež, Czech Republic ²Joint Institute for Nuclear Research, Dubna, Russia ³National Nuclear Research University MEPhI, 115 409 Moscow, Russia

E-mail: sivacek@ujf.cas.cz

Monte Carlo simulations were performed to estimate properties of improved 4π γ - spectrometer "MULTT" designed for registration of prompt gamma from nuclear reactions. Results are compared to previous version of spectrometer and data obtained during on-beam measurements.

Monte Carlo simulation of $12 \times CsI(TI)$ & $4 \times CeBr3$ and $12 \times CsI(TI)$ & $6 \times CeBr3$ $4\pi \gamma$ -spectrometers

Probability of registering gamma in coincidence in any of Csl crystals = 5,5 +/- 0,01 % Probability of registering gamma in coincidence in CeBr3 crystal = 9,6 +/- 0,01 % Overall probability of registering a gamma in coincidence = **94,95 +/- 0,25** %

Probability of registering gamma in coincidence in any of CsI crystals = 5,5 +/- 0,01 % Probability of registering gamma in coincidence in CeBr3 crystal = 4,8 +/- 0,01 % Overall probability of registering a gamma in coincidence = **89,55+/- 0,25** %

IR, Joint Institute for Nuclear Research, 141980, Dubna, Russia;
IPHI, National Research NuclearUniversity,115409, Moscow, Russia;
Institute of Nuclear Physics PAN, 31-342 Kraków, Poland;
Institute ASCR, CZ-250 68 Řež, Czech Republic;
Institute, Almaty, Kazakhstan;
Institute, Almaty, Kazakhstan;
Institute Institute of Physics and Nuclear
Institute, Bucharest - Magurele, Romania;
Institutov Eurasian National University, Astana, Kazakhstan;
Institute of Physics, P.O. Box 35 (YFL) FI 40014
Inversity of Jyväskylä, Finland

IX International Symposium on Exotic Nuclei

Russia, Petrozavodsk September 10-15, 2018

Organized by: FLNR JINR (Dubna), RIKEN (Wako-shi), GANIL (Caen), GSI (Darmstadt), NSCL (Michigan), PetrSU (Petrozavodsk) http://exon2018.jinr.ru

exon2018@jinr.ru

Symposium will be held in Petrozavodsk, the capital city of the Republic of Karelia We hope that taking place in such an exotic region the Symposium will contribute to the success of productive work on exotic nuclei and will promote the collaboration of physicists from different countries.

The Symposium will be devoted to the investigation of nuclei in extreme states and, in particular, at the limits of nuclear stability (from very light neutron- and proton-rich up to superheavy nuclei).

- The Topics to be discussed are:
 - Properties of light exotic nuclei
- Superheavy elements. Synthesis and properties
 - Rare processes and decays
- Radioactive beams. Production and research programs
 - Experimental facilities and future projects