Theoretical description of the hot nuclei de-excitation

K. Mazurek, M. Ciemała, M. Kmiecik, A. Maj, D. Lacroix, D. Gruyer, J. Frankland

The Niewodniczanski Institute of Nuclear Physics - PAN, Kraków, Poland IPNO, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France

January 23, 2018

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

January 23, 2018 1 / 16

Outline

- Entrance channel: Heavy-Ion Phase-Space Exploration (HIPSE)
- Exit channels
 - Thermal Shape Fluctuation Method (TSFM) for GDR
 - Dynamic description by solving Langevin transport equations for evaporation and fission
- Sequential fission

FIG. 33: Illustration of the diversity of reaction mechanisms. Top: competing phenomena whe fossil quasi-target and quasi-projectile survive. Middle: competing phenomena where a compound nucleus is eventually formed at the intermediate reaction stage. The excitation energy and/or beam energy for which these mechanisms appear are given in the bottom part (Adapte from (Lacroix, 2002b)).

Experimental Results - ${}^{48}\text{Ti} + {}^{40}\text{Ca} \rightarrow {}^{88}\text{Mo}$ M. Ciemała et al. Phys. Rev. C 91, 054313 (2015)

FIG. 9. (Color online) A comparison of the γ -ray spectra from the ⁴⁸Ti + ⁴⁰Ca reaction, at the beam energies of 300 MeV and 600 MeV, with the results of the *GEMINI++* fit (see text).

GDR+HIPSE

Geometrical Symmetry Breaking

Thermal Shape Fluctuation Model - GDR

Experiment: A. Maj et al., Nucl. Phys. A 731, 319 (2004).

3

(日) (同) (三) (三)

Reaction scenarios - HIPSE

FIG. 33: Illustration of the diversity of reaction mechanisms. Top: competing phenomena where fossil quasi-target and quasi-projectile survive. Middle: competing phenomena where a compound nucleus is eventually formed at the intermediate reaction stage. The excitation energy and/or beam energy for which these mechanisms appear are given in the bottom part (Adapted from (Larcoix, 2002b)).

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

(日) (母) (ヨ) (ヨ) (ヨ) (つ)

HIPSE - Results

LACROIX, VAN LAUWE, AND DURAND

PHYSICAL REVIEW C 69, 054604 (2004)

FIG. 2. Example of nuclear dynamics obtained for the reaction 129Xe+120Sn at \mathbf{F} = 50 MeV/nucleon. From top to bottom, the initial impact parameters b=9 fm, b=6 fm, and b= 2 fm are presented. In each case, from left to right figures correspond to the initial cluster configuration (t=0 fm/c), the configuration before and after the reaggregation (t=50 fm/c), and during the deexcitation (t = 300 fm/c).

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

э

Entrance channel effect - $^{48}\text{Ti} + ^{40}\text{Ca} \rightarrow \, ^{88}\text{Mo}$

Mass distribution

100 =300 MeV 600 MeV 10 Ouasi-projectile Pre-equilibrium field [a.u.] 0.1 0.01 20 30 ٨n 50 70 80 Mass < The correlation of the prefragment mass with

the impact parameter in ${}^{48}\text{Ti}(600 \text{ MeV}) + {}^{40}\text{Ca}$.

Outcome from the HIPSE code

Compound nuclei created by HIPSE code. The $L_{cut}{=}64~\hbar$ marks the spin at which the fission barrier vanishes.

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

January 23, 2018 7 / 16

3

(日) (同) (三) (三)

Entrance channel effect - $^{48}\text{Ti}+^{40}\text{Ca} \rightarrow \,^{88}\text{Mo}$

Angular momentum and temperature distribution

HIPSE + TSFM

The strength functions of the GDR built in compound nucleus $^{88}{\rm Mo}$ (CN) and for ensemble of nuclei generated in the HIPSE code:

the compound nucleus (HIPSE CN), the nuclei produced with pre-equilibrium emission (HIPSE pre-equilibrium) and integrated over the prefragment mass distribution (HIPSE A>60). All calculations were done for 10-64 \hbar range of angular momentum.

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

Stochastic Approach - Langevin transport equations

Dynamical effect

- path from equilibrium to scission slowed-down by the nuclear viscosity
- description of the time evolution of the collective variables like the evolution of Brownian particle that interacts stochastically with a "heat bath".
- excess of prescission particles
- all the parameters of the two dimensional fission fragment distribution and their dependence on various parameters of compound nucleus

Observables	Limitations
 Pre- and post-scission particle multiplicity and energy spectra Mass, charge, angular distributions of the fragments Total Kinetic Energy distribution Isotopic distribution, (N/Z) 	 Wide domain in compound nucleus mass (from 50 to 250) Excitation energy E* (from 30 to 250MeV) Angular momentum L (from 0 to 100 ħ)

Entrance channel effect - HIPSE + 4DLangevin ⁴⁸Ti (12 AMeV) +⁴⁰Ca \rightarrow ⁸⁸Mo (preliminary)

 ^{119}Xe (15 AMeV)+ $^{129}\text{Sn}{\rightarrow}~^{248}\text{Rf}$ (preliminary)

Sequential Fission Procedure

Dynamical evolution of compound nucleus and later each primary fission fragment.

Fusion \rightarrow CN \rightarrow I fission \rightarrow II fission

Xe+Sn central collision from 8 to 25 MeV/A measured with INDRA

(日) (同) (三) (三)

Sequential Fission Procedure

Four different cases can occur:

- compound nucleus ending as an evaporation residue (M_{frag}=1);
- primary fission of the CN with both fragments ending as a secondary evaporation residua (M_{frag}=2);
- primary fission of the CN with one primary fragments undergoing secondary fission while the complementary ends as secondary ER (M_{frag}=3);
- primary fission of the CN with both primary fragments undergoing secondary fission (M_{frag}=4).

I. Dynamical evolution of compound nucleus ²⁴⁸*Rf* at excitation energy 223 MeV.

Sequential Fission Procedure: II step

II. Dynamical evolution of each primary fission fragment.

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

3

▲ 同 ▶ → 三 ▶

Particle Multiplicities

The particle multiplicity emitted during fission (pre) and from the evaporation residue (ER) coming from the primary and secondary FF of the ^{248}Rf compound nucleus. The particle multiplicity from Abdu Chbihi (priv. comm.)

	primary				secondary			
E _{lab} [AMeV]	⟨ <i>p</i> _{pre} ⟩	$\langle p_{exp} \rangle$	$\langle \alpha_{pre} \rangle$	$\langle \alpha_{exp} \rangle$	⟨p _{pre} ⟩	$\langle p_{exp} \rangle$	$\langle \alpha_{pre} \rangle$	$\langle \alpha_{exp} \rangle$
8	0.8236	0.696	0.005	0.417	0.038	0.197	0.055	0.794
12	3.7837	1.838	0.079	1.321	0.153	0.475	0.146	2.418
15	6.648	2.367	0.183	1.876	0.188	0.567	0.181	3.367

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE

January 23, 2018 14 / 16

Image: A matrix

Final fragment charge distribution – Xe + Sn \rightarrow Rf

GDR+HIPSE

January 23, 2018 15 / 16

< 1[™] >

Summary

- The study of the pre-equilibrium particle emission is crucial for discussion of de-excitation of hot nuclei.
- The preliminary estimation of the influence of the pre-equilibrium emission on the shape of the GDR strength function has been done with the Thermal Shape Fluctuation Model.
- The difference between GDR emitted from HIPSE CN and standard CN is due to higher spin influence in the later.
- The pre-equilibrium emission lowers prefragments of spin and temperature thus the low-energy component in GDR spectrum is suppressed.
- The final charge distribution for two fragment and three fragment channels are estimated, sequential fission confirmed.

Wish list:

- FF isomeric distributions for various CN and excitation energies 50-300 MeV
- Correlation between fission fragments and GDR strength functions
- Looking for sequential fission at non-symmetric entrance channel.

Katarzyna Mazurek, IFJ - PAN

GDR+HIPSE