The use of storage rings in the study of reactions at low momentum transfers

> Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen On behalf of the EXL collaboration

NuSPRASEN Workshop on Nuclear Reactions (Theory and Experiment)

Warsaw, Poland

January 23, 2018

university of groningen

Why low momentum transfer hadronic scattering?

- ✓ Investigation of Nuclear Matter Distributions along Isotopic Chains:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering <u>at low q</u>: high sensitivity to nuclear periphery

- ✓ Investigation of Giant Monopole Resonance in Doubly Magic Nuclei:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>

- ✓ Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the pre-supernova evolution (core collapse) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u>

Bulk Properties

university of groningen

Example:

The Collective Response of the Nucleus: Giant Resonances

Example:

The Collective Response of the Nucleus: Giant Resonances

Photo-neutron cross sections

university of groningen

Example:

The Collective Response of the Nucleus: Giant Resonances

Kinematics for inverse reaction for ⁵⁶Ni

Kinematics for inverse reaction for ⁵⁶Ni

Storage Ring

Active Target

university of groningen

First EXL experiment with the existing storage ring at GSI (ESR)

EXL=EXotic nuclei studied with Light-ion induced reactions at storage rings

university of groningen

GSI and FAIR

EXL setup @ ESR

university of groningen

The new ESR Scattering chamber

Si(Li) 1st DSSD DSSD & Si(Li)s 2nd DSSD • **DSSD**: 128 × 64 strips, target. aperture $(6 \times 6) \ cm^2$, 285 µm thick . Si(Li): 8 pads, (8 × 4) cm², 6.5 mm thick active vacuum barrier heam . moveable aperture to improve angular resolution

university of groningen

Kinematics for inverse reaction for ⁵⁶Ni

First results with radioactive beam

October 25, 2012:

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

Beam energy 400 MeV/u

First results with radioactive beam ⁵⁶Ni(p,p), E = 400 MeV/u

First results with radioactive beam

First results with radioactive beam Elastic p-scattering off Ni isotopes (E105)

First results with radioactive beam and proton target

M. von Schmid et al., Submitted to Nature

university of groningen

Elastic alpha scattering off ⁵⁸Ni at 100 and 150 MeV/nucleon

- Ph.D., J.C. Zamora,
- Zamora et al., PRC 96, 034617 (2017)

The new ESR Scattering chamber

Si(Li) 1st DSSD DSSD & Si(Li)s 2nd DSSD • **DSSD**: 128 × 64 strips, target. aperture $(6 \times 6) \ cm^2$, 285 µm thick . Si(Li): 8 pads, (8 × 4) cm², 6.5 mm thick active vacuum barrier heam . moveable aperture to improve angular resolution

university of groningen

Inelastic alpha scattering (100 MeV/nucleon, PhD J.C. Zamora)

Inelastic alpha scattering (100 MeV/nucleon) from ⁵⁸Ni

• J.C. Zamora et al., PLB 763, 16 (2016)

Monopole mode in 58Ni and 56Ni:Ringvs.active target

⁵⁸Ni

′ university of groningen

⁵⁶Ni

Conclusions and outlook

- Large efforts are taking place for both the ring environments as well as for active targets.
- Bulk properties (radius, compressibility etc.) are the main subject of the present low-q measurements.
- The goal is to go towards neutron-rich medium heavy and heavy nuclei (astrophysical processes).
- First measurements are done with Ni isotopes.
- First physics measurements have already produced beautiful results.
- More measurements are planned with both systems (ESR, HESR, ACTAR ...), but with major improvements and for various reactions.

university of groningen

Upgrade of the first EXL experiment

GSI and FAIR

The EXL-E105 Collaboration

S. Bagchi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵,
H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹,
O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴,
Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴,
F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴,
B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴,
D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹ for EXL coll.

¹ KVI-CART, Groningen
 ² Technische Universität Darmstadt
 ³ ATOMKI, Debrecen
 ⁴ GSI, Darmstadt
 ⁶ Technische Universität München
 ⁷ Institute of Modern Physics, Lanzhou
 ⁸ University of Tsukuba
 ⁹ RIKEN Nishina Center
 ¹⁰ The University of Edinburgh
 ¹¹ Saitama University center for advanced radiation technology

Thank you!

university of groningen