Constraining the Symmetry Energy with Neutron-Removal Cross Sections

TECHNISCHE UNIVERSITÄT DARMSTADT

T. Aumann

- C.A. Bertulani
- F. Schindler

S. Typel

arXiv:1710.00176, PRL 119 (2017) 262501

ENSAR2 – NuSPRASEN Workshop on Nuclear Reactions Heavy Ion Laboratory Warsaw, Poland

Outline

- Motivation
- Constraining the Slope Parameter L
- New Approach to Determine the Neutron Skin Thickness
- Theoretical Description
- Cross Sections
- Theoretical Model for Nuclei
- Results for Tin Nuclei
- Accuracy of Reaction Theory
- Conclusions

Motivation

symmetry energy of nuclear matter

- density dependence of E_{sym}(p)
 - below saturation density *ρ*₀ ≈ 0.15 fm⁻³: convergence of theoretical approaches, consistency with experimental constraints
 - above saturation density: large uncertainties
- characteristic parameters at saturation
 - symmetry energy at saturation J = E_{sym}(*ρ*₀): rather well constrained
 - ► slope parameter $L = 3\rho_0 \frac{dE_{sym}}{d\rho} \Big|_{\rho=\rho_0}$ still large uncertainties
- experimental determination
 - methods ?

Constraining the Slope Parameter L

tight correlations with

- neutron skin thickness \(\Delta\)rnp (see, e.g., X. Roca-Maza et al., Phys. Rev. Lett. 106 (2011) 252501)
- parity-violating asymmetry A_{PV} in *e* scattering on ²⁰⁸Pb (PREX) (see, e.g., S. Aprahamyan et al., Phys. Rev. Lett. 108 (2011) 112502)
- ground-state dipole polarizability α_D (see. e.g., P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81 (2010) 051303)

uncertainties

- Parity-violating asymmetry: A_{PV}(±3%) ⇒ Δr_{np}(±0.06 fm) ⇒ L(±40 MeV) (X. Roca-Maza et al., Phys. Rev. Lett. 106 (2011) 252501)
- dipole polarizability α_D : 20 MeV $\leq L \leq$ 66 MeV

(X. Roca-Maza et al., Phys. Rev. C 92 (2015) 064304)

New Approach to Determine the Neutron Skin Thckness

high-energy nuclear collisions

- secondary beams of neutron-rich nuclei (neutron-rich Sn isotopes)
- beam energies of 0.4 to 1 GeV/nucleon
- hydrogen or carbon targets (¹²C)
- high number of events in hadronic reactions

cross sections

- total reaction cross section $\sigma_R = \sigma_{\Delta N} + \sigma_{\Delta Z}$
- ► total neutron-removal cross section $\sigma_{\Delta N}$ \Rightarrow sensitivity to neutron skin thickness Δr_{np}
- total charge-changing cross section σ_{ΔZ}

theoretical description

Glauber multiple scattering theory

(see. e.g., M.L. Miller et al., Annu. Rev. Nucl. Part. Sci. 57 (2007) 205)

Theoretical Description

Glauber multiple scattering approach

▶ cross section for production of fragment (Z, N) from projectile (Z_P, N_P)

$$\sigma = \binom{Z_P}{Z} \binom{N_P}{N} \int d^2 b \left[1 - P_p(b)\right]^{Z_P - Z} P_p^Z \left[1 - P_n(b)\right]^{N_P - N} P_n^N$$

survival probability of single-nucleon i

$$P_{i}(b) = \int dz \ d^{2}s \ \varrho_{i}^{P}(\vec{s},z) \exp\left[-\sigma_{ip}Z_{T} \int dz' \ \varrho_{p}^{T} \left(\vec{b}-\vec{s},z'\right) - \sigma_{in}N_{T} \int dz' \ \varrho_{n}^{T} \left(\vec{b}-\vec{s},z'\right)\right]$$

Input

- nucleon-proton (neutron) total reaction cross sections σ_{ip} (σ_{in}) from experiment
- ► projectile (target) proton (neutron) densities $\varrho_{\rho(n)}^{P(T)}$, normalized as $\int d^3r \, \varrho_{\rho(n)}^{P(T)} = 1$, from theory

Cross Sections

NN Reaction Cross Sections

 fit of experimental data from 10 MeV to 5 GeV (C.A. Bertulani and C. De Conti, Phys. Rev. C 81 (2010) 064603)

Total ¹²C-¹²C Reaction Cross Sections

- ¹²C densities from elastic electron scattering (E.A.J.M. Offermann et al., Phys. Rev. C. 44 (1991) 1096)
- theory without/with Pauli blocking
 (F. Schindler, Doctoral Thesis (2017) TU Darmstadt)
- experimental data

(100-400 MeV/nucleon: M. Takechi et al.,
Phys. Rev. C 79 (2009) 061691
790 MeV/nucleon: I. Tanihata et al.,
in *Radioactive Nuclear Beams*, World Scientific (1990) 429
950 MeV/nucleon: A. Ozawa et al.,
Nucl. Phys. A 691 (2001) 599)

Theoretical Model for Nuclei

Relativistic Density Functional

- phenomenological model
- density dependent nucleon-meson couplings
- fit of parameters to observables of nuclei
- systematic variation of slope parameter L starting from standard parametrization DD2 (S. Typel, Phys. Rev. C 89 (2014) 064321)

parametrization	symmetry	slope
	energy	parameter
	J [MeV]	<i>L</i> [MeV]
DD2+++	35.34	100.00
DD2++	34.12	85.00
DD2 ⁺	32.98	70.00
DD2	31.67	55.04
DD2 ⁻	30.09	40.00
DD2	28.22	25.00

Results for Tin Nuclei I

- Dependence on Mass Number A
- Example: ¹³²Sn

L from 25 MeV (DD2⁻⁻) to 100 MeV (DD2⁺⁺⁺), variation of \pm 60% \Rightarrow

- neutron skin thickness Δr_{np} from 0.15 fm to 0.34 fm (±39%)
- total reaction cross section σ_R from 2550 mb to 2610 mb (±1.2%)

Results for Tin Nuclei II

- Dependence on Mass Number A
- Example: ¹³²Sn

L from 25 MeV (DD2⁻⁻) to 100 MeV (DD2⁺⁺⁺), variation of \pm 60% \Rightarrow

- neutron skin thickness Δr_{np} from 0.15 fm to 0.34 fm (±39%)
- neutron-removal cross section
 σ_{ΔN} from 460 mb to 540 mb (±8%)

Results for Tin Nuclei III

- Dependence on Slope Parameter L
- ► Example: ¹²⁴Sn variation of *L* by ±5 MeV ⇒
 - ► variation of ∆r_{np} by ±0.01 fm
 - variation of σ_{ΔN}
 by ±5 mb (±1%)

sensitivity even higher for ¹³²Sn

Accuracy of Reaction Theory I

Nuclear Fragmentation in High-Energy Collisions

- primary fragment production: multi-nucleon removal via nucleon-nucleon collisions
- secondary fragment production: nucleon evaporation (e.g. Hauser-Feshbach theory of compound-nucleus decay) model dependent, but not required here (e.g., less than 0.5% of σ_{ΔN} transferred to σ_{ΔZ} for 580 MeV/nucleon ¹²⁴Sn on ¹²C)

Nucleon Loss after Inelastic Excitation

- e.g. collective states in the continuum/giant resonances
- nuclear and electromagnetic contributions
- > has to be known with uncertainty < 5%, impossible with present reaction theory
- measurable with state-of-the-art kinematical complete experiments (very different angular distribution, boosted to forward direction at high beam energy)

- **Eikonal Description of Primary Process** test of model performance for ¹²C+¹²C reaction
 - input: NN cross sections, density distributions
 - no additional energy-dependent parameters
 - improvement by Pauli blocking correction (C.A. Bertulani and C. De Conti, PRC 81 (2010) 064603)
 - ► below \approx 400 MeV/nucleon: effects of Fermi motion \Rightarrow increase of σ_R (M. Takechi et al., PRC 79 (2009) 061601)
 - ► no experimental data between 400 and 800 MeV/nucleon ⇒ extremely important
 - ► different energy dependence of *np* and *pp* cross sections ⇒ effects with change of targets

Accuracy of Reaction Theory II

Accuracy of Reaction Theory III

Eikonal Description of Primary Process

energy dependence, example with ¹³⁴Sn projectiles

- comparison of proton and ¹²C targets
- proton target: test of *n* skin only with *pn* reactions, charge changing only with *pp* reactions
- ¹²C target: surface dominated process
- ► ratios of cross sections: no energy dependence for $\sigma_R(p)/\sigma_R({}^{12}C)$, but for $\sigma_{\Delta N}(p)/\sigma_{\Delta N}({}^{12}C)$ and $\sigma_{\Delta Z}(p)/\sigma_{\Delta Z}({}^{12}C)$
- \Rightarrow crucial experimental tests for reaction theory

Conclusions

Measurement of Total Neutron-Removal Cross Sections

- study of neutron-rich nuclei in relativistic heavy-ion collisions
- experimental determination of neutron skin thickness/slope parameter L
- 2% uncertainty in experimental and theoretical cross sections
 ⇒ 10 MeV uncertainty in *L* achievable
- promising technique, possible with new detectors at existing radioactive-beam facilities

Reaction Model

experimental variations of targets, beams, energies \Rightarrow

- test validity of reaction model
- track sensitivity of measurements
- guide systematic improvements