

NOTRE DAME

Study of the near-barrier fusion of the ⁸B+⁴⁰Ar proton-halo system

KU LEUVEN

Maxime Renaud NUSPRASEN workshop, Warsaw - January 23, 2018

Outline

The physics case

- Halo nuclei reactions
- The Boron-8 case

The experiment

- Active Target Time Projection Chambers
- Proof-of-concept
- Expectations

Outline

The physics caseHalo nuclei reactions

The Boron-8 case

2 The experiment

- Active Target Time Projection Chambers
- Proof-of-concept
- Expectations

KU LEUV

"Halo" nuclei?

- Low separation energy for valence nucleon(s),
- Large reaction cross-section,
- Large matter radii.

Image from H. Simon, Phys. Scr. T152 (2013), 014024

Figure 1: 6He, 2n halo

KU LEUVEN

erc

Fusion reactions with halo nuclei

Nuclear reaction are sensitive to nuclear structure.

In the case of fusion:

- Effect of break-up and transfer on fusion cross-section?
- Multi-body quantum tunneling problem.

Figure 2: Reduced total reaction cross section on ²⁷Al for different weaklybound projectiles *vs.* ¹⁶O. [1]

erc

KILL FUV

Comparing with what?

Universal Fusion Function :

• Proposed in [1], to compensate for the static effects in the fusion excitation function

•
$$F(x) = \frac{2E}{\hbar\omega R_B^2} \sigma_F(x)$$
,
where $x = \frac{E-V_B}{\hbar\omega}$,
with $\hbar\omega = \sqrt{\frac{\hbar^2 |V''(R_B)|}{\mu}}$.

Figure 3: UFF for several experiments (J. Rangel *et al.*, Eur. Phys. J. A49 (2013), 57)

KU LEUV

erc

[1] L.F. Canto et al., J. Phys. G36 (2009), 015109

Boron-8

Properties:

- one-proton halo,
- separation energy of 0.138 MeV,
- important in CNO cycle.

E.F. Aguilera *et al.* [1] & A. Pakou *et al.* [2] reported divergent behaviour for the fusion excitation function.

Figure 4: Data from the papers [1, 2] shown with the UFF. [3]

KU LEUV

erc

E.F. Aguilera *et al.*, Phys. Rev. Lett. 07, 092701 (2011), [2] A. Pakou *et al.*, Phys. Rev. C 87, 014619 (2013),
J.J. Kolata *et al.*, Eur. Phys. J. A 52, 16123 (2016)

The difficulties:

- weak beam intensities ($\sim 10^4$ ions/s),
- heavily contaminated ($\sim 100\%$ [1]),
- fusion dominated by break-up around/below V_B [2].

 \Rightarrow Collecting enough relevant data is a major challenge.

[1] L.F. Canto et al., Phys. Rep. 596 (2015), 1-86 [2] J.J. Kolata et al., Nucl. Instr. Meth. Phys. Res. A830 (2016), 82-87.

erc

Outline

The physics case
Halo nuclei reactions
The Boron-8 case

The experiment

- Active Target Time Projection Chambers
- Proof-of-concept
- Expectations

"Active target time projection chambers"

Figure 5: AT-TPC operating principle. [1])

- Detection medium = target,
- Almost 4π coverage,

[1] D. Suzuki et al., Phys. Rev. C87 (2013), 054301.

• High efficiency at low intensities.

KU LEUVEN

erc

Proof-of-concept: ¹⁰Be fusion measurement

J.J. Kolata *et al.* used the same detector to investigate the fusion excitation function for ${}^{10}\text{Be+}{}^{40}\text{Ar.}$ [1]

One 90h run @ 100 cps, P10 gas target:

- good off-line channel identification,
- disentangled CF and NCF.

Figure 6: Experimetal total (black), complete (blue) and incomplete (red) fusion cross section. [1]

KU LEU

erc

[1] J.J. Kolata *et al.*, Nucl. Instrum. Meth. Phys. Res. A830 (2016), 82-87.

Expectations

Experiment to be performed at the *TwinSol* facility, University of Notre Dame, USA.

Beam yield: $\sim 10^4 \ ^8{\rm B}$ ions/s, @ maximum 27 MeV

Coulomb barrier height: 14 MeV

$E_{lab.}$ [MeV]	Estim. $\sigma_{tot.fus.}$ [mb]	Rate (ev./s)
14	0.66	0.02 (~ 1.2/min)
15	3.47	0.1
17	63.2	2.1
18	152	5.1
19	252	8.4

erc

KU LEUV

Calculation made with the PACE4 engine.

Thank you for your attention!

Questions?

围

VERSITY OF **FRE DAME**

Back-Up

Boron-8

Figure 7: UFF and reduced $\sigma_{fus.}$ for several experiments (J. Rangel *et al.*, Eur. Phys. J. A49 (2013), 57)

Proof-of-concept: ¹⁰Be fusion measurement

Figure 8: Reconstructed tracks of identified fusion events. (J.J. Kolata *et al.*, Nucl. Instrum. Meth. Phys. Res. A830 (2016), 82-87)

erc

KU LEUV

¹⁰Be fusion measurement results

86

J.J. Kolata et al. / Nuclear Instruments and Methods in Physics Research A 830 (2016) 82-87

Fig. 10. Observed ratio of charged-particle-associated fusion to total fusion. PACE4 calculations of this ratio for a P10 target, for ⁴⁰Ar, and for ¹²C are also shown.

¹⁰Be energy of about 14 MeV. In this region the comparison between theory and experiment is very good, though there is an indication of a small excess of NCP fusion throughout the range and a deficit of CP fusion above about 27 MeV. It is not clear

KU LEUVEN

erc

