

Perspectives for study with light radioactive ion beams at ACCULINNA-2

Grzegorz Kaminski^{a,g} for the ACCULINNA Collaboration

a – Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

- b Institute of Physics, Silesian University in Opava, Czech Republic
- c Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
- d GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany
- e National Research Center "Kurchatov Institute", Moscow, Russia
- f Institute of Nuclear Physics PAN, Krakow, Poland
- g Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- h Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Russia
- i Faculty of Physics, University of Warsaw, Warsaw, Poland
- j Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden
- k- All-Russian Research Institute of Experimental Physics, Sarov, Russia
- I Ioffe Physical Technical Institute, St. Petersburg, Russia
- m NSCL, Michigan State University, East Lansing, Michigan, USA

Outline

- Introduction. Light RIB facility at FLNR (ACCULINNA)
- Status of the ACCULINNA-2 project
- First beam at the ACCULINNA-2
- Experimental methods and techniques
- Experiments @ACCULINNA& first day experiments at ACCULINNA-2
- Optical Time Projection Chamber OTPC at ACCULINNA
- Summary

Superheavy and "superlight" research at FLNR, JINR

Superheavy and "superlight" research at FLNR, JINR

beams up to ²⁶S

Use of the ACCULINNA fragment separator has Advantages:

• The <u>record intensity</u> of the primary cyclotron beams (5 pµA of ¹¹B);

- Relatively (to in-flight separators) **low beam energies**, that provide a good energy resolution, high reaction cross section partly compensate the low intensities of secondary beams.
- These <u>beam energies are optimal</u> for the nuclear structure studies in transfer, charge-exchange reactions;

• <u>Complete kinematics method</u> allows for clean, background-free spectra;

• <u>Correlation studies</u> provides possibilities for spin-parity identification of the resonance states.

ACCULINNA open **possibilities** for wide range of experiments

- correlation experiments
- lifetime measurements
- spectroscopic structure studies
- search for new light exotic nuclei and exotic decays

Use of the **ACCULINNA** fragment separator has its **Disadvantages**:

- It is only efficient with <u>lightest neutron-rich nuclei</u>;
- Does not cope with the request of <u>high intensity clean beams</u> with Z>8;
- We need **more powerful detector rays**, and a bigger experimental area (for TOF);
 - <u>Small length of the separator puts limitation on the energy resolution;</u>

A new separator ACCULINNA-2 Contract with SIGMA PHI to design and instalation of the ACC-2: 2011 - 2015

Layout of ACCULINNA-2

Layout of ACCULINNA-2

Characteristics of existing and new in-flight RIB separators (ΔΩ and Δp/p are angular and momentum acceptances, Rp/Δp is the firstorder momentum resolution when 1 mm object size is assumed)

	ACC / ACC-2 FLNR JINR	RIPS / BigRIBS RIKEN	A1900 MSU	FRS / SuperFRS GSI	LISE3 GANIL
ΔΩ, msr	0.9 / 5.8	5.0 / 8.0	8.0	0.32 / 5.0	1.0
Δp/p, %	± 2.5 / ± 3.0	± 3.0 / 6.0	± 5.5	± 2.0 / 5.0	± 5.0
Rp/∆p	1000 / 2000	1500 / 3300	2915	8600 / 3050	2200
Bρ, Tm	3.2 / 3.9	5.76 / 9.0	6.0	18 / 18	3.2 - 4.3
Length, m	21 / 38	27 / 77	35	74 / 140	19(42)
E, AMeV	10÷40 / 6÷60	50÷90 / 350	110÷160	220÷1000/1500	40÷80
Additional RIB Filter	No / RF-kicker	RF-kicker / S-form	S-form & RF- kicker	S-form / Preseparator	Wien Filter

Beams and energies @ ACCULINNA-2

FINE

... somewhere among other facilities

Grzegorz Kaminski, NUSPRASEN, Warsaw

RIBs from ACCULINNA-2

calculations done with LISE++

	Primary beam		Ra	dioactive Ion Bea	am
lon	Energy, MeV/u	lon	Energy, MeV/u	Intensity, s ⁻¹ (per 1 pµA)	Purity, %
¹¹ B	32	⁸ He	26	3*10 ⁵	90
¹⁵ N	49	¹¹ Li	37	3*10 ⁴	95
¹¹ B	32	¹⁰ Be	26	1*10 ⁸	90
¹⁵ N	49	¹² Be	38.5	2*10 ⁶	70
¹⁸ 0	48	¹⁴ Be	35	2*10 ⁴	50
22.		¹⁷ C	33	3*10 ⁵	40
²² Ne	44	¹⁸ C	35	4*10 ⁴	30
³⁶ S	64 (U400M upgrade)	²⁴ 0	40	2*10 ²	10 (with RF kicker)
10 _B	39	⁷ Be	26	8*10 ⁷	90
²⁰ Ne	53	¹⁸ Ne	34	2*10 ⁷	40
³² S	52	²⁸ Be	31	2*10 ⁴	5 (with RF kicker)

Layout of ACCULINNA-2

Layout of ACCULINNA-2

F5

Grzegorz Kaminski, NUSPRASEN, Warsaw

The zero angle spectrometer

February 2017

November 2017

RF kicker: started in 2016, installation in the middle of 2018

- The frequency range 14,5 20 MHz is the best compromise in term of dimensions and RF power
- We consider some margin on the RF power and a 15 Kwatts amplifier.
- Reducing the copper cavity diameter to 1000 mm and the coaxial line diameter to 100 mm gives a RF power of 12 Kwatts which is still below 15 Kwatts.

CALCULATION	
Frequency range (MHz)	14,5 - 20
Peak voltage (KV)	120
GAP (mm)	70
Width of electrode (mm)	120 min
Length of electrodes (mm)	700
Cylinder diameter (mm)	1200 max
Stem diameter (mm)	120 max
Length of coaxial line from beam axis (mm)	1830
Current at junction (A)	990
Current in short-cut (A)	1200
RF power (Watts)	10 000
Reactance Q	8 500
Df (RF tuning) (MHz)	0,66

PARAMETERS AND

Η ΑΤΙΛΝ ΔΕΩΗΤΟ

Goals of the test
in March 2017:- ¹⁵N profile at F3 depending on F1 diaph. (Ø 25, 12, 7 mm)
- main parameters (I, P, X_Y) of some RIBs at F3, F4, F5

RIB's profile estimation in ¹⁵N (49.7 AMeV) + Be (2 mm) reaction ($X_1 Y_1 = 2_8$ mm, $\varepsilon = 35$ mrad, $\Delta p/p = 2.5\%$, W = 1 mm)

19

Beam profile of ¹⁵N at F3 with Ø7 mm diaphragm at F1

Grzegorz Kaminski, NUSPRASEN, Warsaw

¹²Be from ¹⁵N(49.7 AMeV) + Be(2 mm): I = 190 1/s @ 1 pnA; Δp/p = 4%; P ~ 92%; E = 39.4 AMeV; X₅_Y₅ = 22_25 mm Good agreement with calculation & Factor ~ 25 (I_Acc2 / I_Acc1)

⁶He from ¹⁵N(49.7 AMeV) + Be(2 mm): I = 2700 1/s @ 1 pnA; Δp/p = 2%; E = 31.5 AMeV; X₅_Y₅ = 20_20 mm; P ~ 53% @ F3: ±11 mm

Good agrement with estimations

RIBs production rates in ¹⁵N(49.7 AMeV) + Be(2 mm) reaction F1: I(¹⁵N) = 1 pnA @ 7 mm; F2: $\Delta p/p = 2\%$, Wedge_Be = 1 mm

RIB	Energy, MeV/nucl.	Intensity, 1/s	
¹⁴ B	37,7	120	
¹² Be	39,4	150	
¹¹ Li	37,0	4	ient. 17
⁹ Li	33,1	1100	erin 1 20
⁸ He	35,8	25	Exp in
⁶ He	31,5	2700	

Main parameters (I, P, X_Y) are agree well with estimations First experiments with RIBs could be started in 2017 (I < 0.1 pμA) Experiments with intense primary beam (~ 1 pμA) will be able since 2018

¹²Be + d → ⁶Li + ⁸He (alpha transfer cross section)
⁶He + d → ³He + ⁵H (proton transfer cross section)
Dovember 2017

Moving ahead to ⁷H via ¹¹Li or ⁸He 2018 - flagship exp.

Scope of activity of ACCULINNA

Scope of activity for ACCULINNA-2

FLNR

ACCULINNA-2 - reactions

ACCULINNA-2 - reactions

Plan for the year 2018:

⁶*He+d elastic and inelastic scattering at* $\theta_{lab} \sim 5-80 \text{ deg}$ (~20-170 CMdeg) Beta-delayed alpha decay of ¹¹Be: *re-investigation with the use optical-TPC* $d(^{6}\text{He},^{3}\text{He})^{5}\text{H}$ *invariant mass measurement* and *first attempt for* $d(^{8}\text{He},^{3}\text{He})^{7}\text{H}$

		08.12.2017	JANUARY			FEBRUARY					MARCH						APRIL						MAY								
	1	КОМБАС, 10.01.18 – 29.01.18																													
	2	Ревизия, 29.02.18-04.02.18																													
	3	ACC-2, WU 04.02.18-23.02.18																													
Τ	4	АСС-1, ЛРБ 25.02.18-27.02.18											1																		
	5	POCKOCMOC, 01.03.18-15.03.18																													
	6	АСС-2, сект. 6, 17.03.18-15.04.18														>															
	7	Переход на НЭ 15.04.18-29.04.18																													

- 1. КОМБАС, 10 января 29 января 2018, 11В 36А MeV, 1 еµА.
- 2. Ревизия каналов. 29 января 04 февраля 2018.
- 3. ACCULINNA-1(?), эксперимент (Варшавский ун-т), 4 февраля 23 февраля 2018, 11B, 32S(?), 36A MeV.
- 4. ACCULINNA-1, эксперимент (ЛРБ), 25 февраля 27 февраля 2018, 328?,11В.
- 5. РОСКОСМОС, 01 марта 15 марта 2018.
- 6. ACCULINNA-2, эксперимент (сектор 6 ЛЯР), 17 марта 15 апреля 2018, 11В, 36А MeV.
- 7. Переход на низкие энергии. 15 апреля 29 апреля 2018.

Moving ahead to the flagship experiment ⁷H

Primary beam diagnostics along the line F0-F1 has been partly completed.
 Radiation shell near movable gate at F3 was done; at F1-F2 area – 2018.
 All communications at F3-F5 (electricity, water, air condition, reaction chamber etc.) were fully completed.

Primary beam diagnostics along the line F0-F1: Faraday Cups & Al_2O_3

Secondary Electron Emission Crids with POLAND electronics (since 2018)

Example: 15 wire spaced by 1.5 mm:

 \Rightarrow very large dynamic range up to 10⁶.

permanent data, ~ 0.5 mm accuracy Radiation shell in the area of movable gate was significantly reinforced: a) column 2x2 m; b) top of the gate ++> overlap with a wall (August 2017)

F3-F5 area was fully completed by communications, equipment and electronics

First experiment at ACCULINNA-2 was performed in December 2017 with ¹⁵N primary beam (E~49 AMeV & I~0.1 pµA on the production target, Be 2 mm) Plan on 2017: d(⁶He,³He)⁵H as a tool for the main run d(⁸He,³He)⁷H
 * cross section values for the 1p and 1n transfer reactions in a wide θ_{CM}
 ** improvement in missing mass measurements via novel telescopes

⁵*H* (left) and ⁵*He* (right) energy spectra depending on ³*He-t* coincidences

Experimental program in 2017 was a little bit modified: ⁶He+*d* (elastic and inelastic scattering in a wide θ_{CM}) instead of *d*(⁶He,³He)⁵H Motivation: *pure information about OP, more simple run, short expositions*

0 2 4

20

12

SOX I

Preliminary results of the first exposition in December 2017. *d-⁶He coincidences were measured in the following two ranges:* 25-45 LABdeg (~130-90 CMdeg) and 60-80 LABdeg (~20-60 CMdeg)

Plan: 5-80 LABdeg (20-170 CMdeg) for both elastic and inelastic process

Hunt for ⁷H and search for the *4n* radioactivity in the *d*(¹¹Li,⁶Li)⁷H reaction

* I(¹¹Li @ 30 AMeV) ~ 2x10⁴ pps ==> ~ 100 ⁷H events/day (missing mass)
 ** Decay energy will be measured with around 100 keV resolution,
 ~ 3 events/day (⁶Li-t-n coincidences)

Experimental tool - Optical Time Projection Chamber

Optical Time Projection Chamber (OTPC) - A new type of modern ionization chamber with an optical readout. Invented at the University of Warsaw by W. Dominik

Study of β -delayed charged particle emission from ^{27}S and ^{26}P

 32 S @ 50 MeV/u + 9 Be \rightarrow ACCULINNA \rightarrow 27 S

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315

Grzegorz Kaminski, NUSPRASEN, Warsaw

Study of β -delayed charged particle emission from ²⁷S and ²⁶P

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315, N Sokołowska Master Thesis, AGH, Krakow 2016

In 2018/2019 new measurments of β - delayed particle emission from ²⁷S @ ACCULINNA-2 are planned \rightarrow much better statistic of two orders of magnitude is expected (we plane tu purify the beam with RF-kicker)

Study of β -delayed particle emission from ^{11}Be

One of the approaches of study of ¹¹Be by means of the OTPC at ACCULINNA-2 Accurate determination of the branching ratio of β -delayed α emission decay

[1] - D. Millener et al., Phys. Rev. C26 (1982) 1167-1185
[2] - K. Riisager et al., Phys. Lett. B 732, 305 (2014).

▶ 1n halo nucleus

•
$$T_{1/2} = 13.76(7) s$$

► decay modes:

-
$$\beta^-, BR = 100\%$$

-
$$\beta^{-}\alpha$$
, BR = 3.1(4)% [1]
- $\beta^{-}p$, BR:

- * theoretical predictions $\sim 10^{-8}$
- * experimental indirect measurement $\sim 10^{-6}$ [2]
- * NO DIRECT observation so far

OTPC collaboration

University of Warsaw

- W. Dominik
- A. Korgul
- A. Ciemny
- L. Janiak
- C. Mazzochi
- K. Miernik
- S. Mianowski
- M. Pfutzner
- M. Pomorski
- N. Sokołowska
- •A. Kubiela

<u>JINR Dubna</u>

- A.Fomichev
- A.Bezbakh
- G.Kamiński
- S.Krupko

<u>GSI</u>

- I. Mukha
- H. Geissel
- S. Weick

<u>NSCL</u>

- •T. Baumann
- •T. Ginter
- A. Stolz
- S. Liddick

Oak Ridge National Lab.

• K. Rykaczewski

University of Tennessee

- R. Grzywacz
- S. Paulauskas

<u>CERN - ISOLDE</u>

- M. Kowalska
- M. Borge

Plan on 2019:

²⁶S in the reaction $p({}^{28}S,t){}^{26}S: I({}^{28}S) \sim 10^3 pps, P \sim 25\%, E \sim 38 MeV/A,$ 1 mm liquid H₂, $\sigma \sim 200 \mu b/sr \implies \sim 10 \text{ events } {}^{26}S \text{ per week}$

Summary and outlook

- ACCULINNA-2 fragment separator commissioned in 2017 is now ready for firstday experiments.
- The intensities obtained in the fragmentation reaction ¹⁵N (49.7 AMeV) + ⁹Be for the RIBs of ¹⁴B, ¹²Be, ^{9,11}Li, ^{6,8}He were on average 25 times higher in comparison with the values for old facility.
- The first-priority experimental program with RIBs is focused on ⁶He+d scattering, beta-delayed exotic decays of ¹¹Be and ^{5,7}H study.
- Further experiments (with RF-kicker and zero angle spectrometer) will be aimed on 26 S observation in (*p*,*t*) reaction with 28 S.
- We are open for collaboration

Grzegorz Kaminski, NUSPRASEN, Warsaw