

NUSPRASEN Workshop on Nuclear Reactions

¹²C nuclear differential cross section measurements for hadrontherapy

(H, C, O, Al and ^{nat}Ti (~Ca) targets)

Marc Labalme

GDR Mi2B collaboration LPC Caen

January 21-24, 2018

• • • • • • • • • • • •

Fragmentation studies for hadrontherapy applications

Nuclear reactions impact in dose deposit

- Consumption of the incident ions (N(x)=N₀.e^(-λx))
- Creation of a mixed radiation field (H, He... C)
 - ⇒ LET distribution → biological effectiveness modification (effect on the tumor)
 - ⇒ Modification of the physical dose delivery (long term effects on healthy tissus)

Fragmentation studies for hadrontherapy applications

Nuclear reactions impact in dose deposit

- Consumption of the incident ions (N(x)=N₀.e^(-λx))
- Creation of a mixed radiation field (H, He... C)
 - ⇒ LET distribution → biological effectiveness modification (effect on the tumor)
 - ⇒ Modification of the physical dose delivery (long term effects on healthy tissus)

\Rightarrow Nuclear reactions have to be considered for treatment planning

Fragmentation measurements at GANIL (France)

Codes are not able to reproduced the fragmentation

- Beam composition with depth
- Biological effects on healthy tissus
- Dose deposition imaging (prompt γ, β⁺, p...)
 - \Rightarrow Experimental data required in the full range of energies (400MeV/n)

Experiments on elemental targets

- Thin Targets (~50 mg⋅cm⁻²) : C, CH₂, Al, Al₂0₃, ^{nat}Ti (~Ca)
- Projectile: 94.6 MeV/n ¹²C (J. Dudouet PhD Thesis 2014)
 - E600 experiment \rightarrow cross sections from 4 to 43°
 - France Hadron Beam Time \rightarrow cross sections at 0°
- Projectile: 50 MeV/n ¹²C (C. Divay PhD Thesis 2017)
 - France Hadron Beam Time \rightarrow cross sections from 3 to 39°

 $\Rightarrow \frac{\delta^2 \sigma}{\delta E \cdot \delta \Omega} \text{ fragmentation measurements of } {}^{12}\text{C on C, H, O, Ti} (Z_{TI}=22 \sim Z_{Ca}=20) \\ \approx 95\% \text{ of a human body composition}$

Experimental Setup

- "Basic" experimental setup \rightarrow 5 Si/Si/CsI telescopes (results a few months after the experiment)
- In vacuum measurements → ECLAN reaction chamber
- FASTER digital acquisition $\rightarrow \Delta$ E/E analysis and pulse shape of CsI signal

\rightarrow experimental estimation of systematics.

labalme@lpccaen.in2p3.fr

NUSPRASEN Workshop on Nuclear Reactions January 21-24, 2018

4 / 16

Analysis

 $\Delta \text{E/E}$ (Si/Si or Si/CsI) and PSA of the CsI

→ Experimental Systematic errors estimation

Two main sources of systematic errors:

- ^{4}He Fragmentation in the CsI \rightarrow ^{3}He
- 2α pile-up \rightarrow ⁶He, ⁶Li and ⁷Li distributions

Digital acquisition with $BLR \rightarrow Experimental estimation$ (CsI pulse shape analysis)

NUSPRASEN Workshop on Nuclear Reactions January 21-24, 2018

Analysis

 $\Delta \text{E/E}$ (Si/Si or Si/CsI) and PSA of the CsI

→ Experimental Systematic errors estimation

Two main sources of systematic errors:

- ⁴He Fragmentation in the CsI \rightarrow ³He
- 2α pile-up \rightarrow ⁶He, ⁶Li and ⁷Li distributions

Digital acquisition with $BLR \rightarrow Experimental estimation (CsI pulse shape analysis)$

95 MeV/n experiment (~50 mg·cm⁻²): $\frac{\delta\sigma}{\delta\Omega}$

- Predominance of Z=1 and Z=2 production (⁴He domination ≤10°)
- Heavy fragments are more forward focused
- $\frac{d\sigma}{d\Omega}$ increase with the mass of the target.
- Angular distribution broadening with the mass of the target.
- No emission at large angle with the Hydrogen target (A>3) (no mid rapidity emission)

Angular distribution Fits (Gaussian + Exponential)

→ Fragment production cross sections

6 parameters to reproduce the angular distributions \rightarrow phenomenological codes

イロト イロト イヨト イヨト

95 MeV/n experiment (~50 mg·cm⁻²): $\frac{\delta^2 \sigma}{\delta E \delta \Omega}$

- E close to the beam energy at forward angles → Distributions dominated by the quasi-projectile contribution
- Cross sections increase with the mass of the target
- Hydrogen target: no low E emission → only quasi projectile contribution (for A>3)

50 MeV/n experiment (~50 mg·cm⁻²): $\frac{\delta\sigma}{\delta\Omega}$

Carbon target

All targets (⁴He)

- Predominance of Z=1 and Z=2 production (⁴He domination \leq 20°)
- Heavy fragments → more forward focused
- $\frac{d\sigma}{d\Omega}$ increase with the mass of the target.
- No emission at large angle with the Hydrogen target (A>3) (no mid rapidity emission)
- Angular distribution broadening when incident energy decreases.

50 MeV/n experiment (~50 mg·cm⁻²): $\frac{\delta^2 \sigma}{\delta E \delta \Omega}$

Carbon target (⁴He)

Energy distributions for C at 50 MeV/u on C target and for fragment ⁴He

All targets (⁴He at 3°)

Energy distributions for C at 50 MeV/u and for fragment ⁴He at 3^a

- E close to the beam energy → Distributions dominated by the quasi-projectile fragmentation
- Cross sections increase with the mass of the target
- Hydrogen target: no low E emission → only quasi projectile contribution (for A>3)

GEANT4(v9.6) angular distributions (BIC, QMD, INCL++)

Carbon target at 95MeV/n

- None of the models included in G4 is able to accurately reproduce the experimental and angular distributions
- INCL: Best results at forward angles for A<18 (quasi projectile emission); not @50MeV/n
- Problem to take into account the "mid-rapidity" emission (large angles)
- jQMD: Decrease of the production at forward angles.

GEANT4(v9.6) energy distributions (BIC, jQMD, INCL++)

- None of the models is able to accurately reproduce the energy distributions
- BIC : Width too small, E mean too high, no mid-rapidity emission
- INCL: Best results (not @ 50MeV/n) at forward angles for A<18 (QP well reproduced), mid-rapidity shape not reproduced
- jQMD: Best shape; Low energies still underestimated.

jQMD: GEANT4(v10.02) vs PHITS(v2.82)

- jQMD @ 50MeV/n & 95MeV/n
- None of the codes is able to accurately reproduce the experimental distributions (angle and energy)
- Importance of the transport simulation code: the same entrance model gives different results in GEANT and PHITS

PHITS: jQMD "old" vs jQMD 2.0 Carbon target at 50MeV/n

- New version of jQMD seems more acurate → no more production fall of at forward angles
- jQMD old: Innacurate treatment of peripheral collisions → instability of the reaction products (T. Ogawa et al., EPJ117 (2016), NN2015)

Summary

- Fragmentation of 50 and 95 MeV/n ¹²C ions on thin targets of medical interest on H, C, O, Al, Ti targets has been measured.
 - double differential cross sections $\frac{\delta^2}{\delta E \delta \Omega}$
 - angular differential cross sections from 0° to \sim 40° (10-15% -sys+stat)
 - Integration of the angular distributions \rightarrow production cross sections
- Composite targets (PMMA) can be deduced from the cross sections of elemental targets (→ organic tissues)
- GEANT4 hadronic models (BIC, jQMD, INCL) do not accurately reproduced the data.
- PHITS (jQMD) do not accurately reproduced the data; jQMD 2.0 > jQMD old

Data and experimental setup details available with free access : http://hadrontherapy-data.in2p3.fr

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlooks

Long term program of systematic measurements of nuclear reactions for hadrontherapy from 50 to 400 MeV/n

• Production measurements of β^+ emitters for hadrontherapy

 \rightarrow measurement at GANIL in 2016 (S. Salvador et al. PRC 95 (2017)) + measurements at LNS in 2018

• ARCHADE (t₀ = December 2014)

- New resource center for hadrontherapy in Caen (first proton treatment in july 2018)
- First carbon beam in 2021-2022

 $\Rightarrow \sim 6 \times 15 \text{ m}^2$ experimental room

 $\Rightarrow \frac{\delta^2 \sigma}{\delta E \delta \Omega}$ measurements with α to ¹²C (²⁰Ne) beams from 100 to 400 MeV/n.

< ロ > < 同 > < 回 > < 回 >

ARCHADE

(loc

FRACAS

Back Up Slides

labalme@lpccaen.in2p3.fr

NUSPRASEN Workshop on Nuclear Reactions January 21-24, 2018

16/16

Experimental Set-Up : 0° experiment (2013)

• 9° detector \rightarrow cross check with previous experiment (agreement within 3%)

95 MeV/n experiment: $\frac{\delta\sigma}{\delta\Omega}$ all targets

labalme@lpccaen.in2p3.fr

16/16

HIPSE simulations (developed for INDRA)

- Phenomenological model developed for heavy systems close to Fermy energies
- Partition inside the overlap region built following coalescence rules in momentum and position spaces (participant-spectator)
- Do not reproduce the QP
- Better reproduction of the "mid-rapidity" emission (medium E) than G4 models

Composite target cross sections reconstruction from cross sections of elemental targets

Distributions for a 1 mm thick PMMA target

Angular and Energy distributions comparison between experimental measurements and calculations from cross sections of elemental targets

⇒ Reproduction of composit material cross sections

• • • • • • • • • • • •

Nuclear reactions

- Processes: break-up, projectile or target fragmentation, neck emission, fission, multifragmentation...
- < 100 MeV/n all these processes can coexist in a complex way (function of the incident beam energy) due to the competition between mean field dynamics and two body in medium interactions.
- > 100-150 MeV/n \sim two body (nucleons-nucleons) interactions.

С

Hydrogen and Oxygen Angular distributions

Oxygen and Hydrogen cross sections have been obtained from composit targets

$$H_2 \rightarrow \frac{d\sigma}{d\Omega}(H) = \frac{1}{2} \times \left(\frac{d\sigma}{d\Omega} (CH_2) - \frac{d\sigma}{d\Omega} (C) \right)$$

$$\mathsf{Al}_2\mathsf{O}_3 \to \frac{d\sigma}{d\Omega}(\mathsf{O}) = \frac{1}{3} \times \left(\frac{d\sigma}{d\Omega}(\mathsf{Al}_2\mathsf{O}_3) - \mathbf{2} \times \frac{d\sigma}{d\Omega}(\mathsf{Al})\right)$$

Hydrogen exemple

- CH₂ & C cross sections measurements
- C cross section subtraction
- Obtained value divided by 2

95 MeV/n experiment (~50 mg·cm⁻²): $\frac{\delta\sigma}{\delta\Omega}$

- Predominance of Z=1 and Z=2 production (⁴He domination $\leq 10^{\circ}$)
- Heavy fragments are more forward focused
- $\frac{d\sigma}{d\Omega}$ increase with the mass of the target.
- Angular distribution broadening with the mass of the target.
- No emission at large angle with the Hydrogen target (A>3) (no mid rapidity emission)

95 MeV/n at 0° experiment (~250 mg·cm⁻²): $\frac{\delta\sigma}{\delta\Omega}$

- Important to constraint the distribution at forward angle (most of the production)
- 0° data for H, C, Al and Ti targets (not enough beam time for Al₂0₃ (and PMMA) targets)
- $\frac{d\sigma}{d\Omega}$ for $2 \le Z \le 5$ (only most produced fragments in mass)

< ロ > < 同 > < 回 > < 回 > < 回 > <

