Nucleon knockout: reaction and structure

Raquel Crespo

Collaborators: E.Cravo, A. Deltuva, A. Arriaga, R. Wiringa

Questions to be adressed:

1) What is the **accuracy** of current standard Fewbody DR approaches **?**

Structure break through: Ab initio models

- Offer the unique possibility to get insight on effects beyond truncated model space approches, that might include the role of NNN, continuum effects.
- Ex1: Variational and Green's function Monte Carlo (VMC, GFMC) techniques (Argonne group: R.B. Wiringa, S.C. Pieper,)

Ex2: NCSM/RGM (S. Quaglioni, P. Navratil, Phys Rev Lett 101, 092501 (2008))

Reaction break through: Exact reaction fewbody frameworks

Nonrelativistic

Target=p

Treats all 3 particles on an equal footing

Projectile = C + n

- > Treats all open channels simultaneously
- > Formulated in terms of the transition amplitude for each interacting pair:

$$t_{\gamma} = v_{\gamma} + v_{\gamma} \quad G_0 \quad t_{\gamma}$$

Pair transition operators
$$G_0 = (E + i0 - H_0)^{-1}$$

Free propagator
$$U^{\beta \alpha} = \overline{\delta}_{\beta \alpha} G_0^{-1} + \sum_{\gamma} \overline{\delta}_{\beta \gamma} t_{\gamma} G_0 U^{\gamma \alpha}$$
$$\overline{\delta}_{\beta \alpha} = 1 - \delta_{\beta \alpha} \quad \text{integral equations}$$

elastic, inelastic, transfer, breakup/knockout

Tool for investigating:

- ✓ Single particle properties
- ✓ Spectroscopic factors

Note: Spectroscopic factors are not observables: extracted from data under the assumption of the validity of a reaction theory and a structure model

Revisiting *standard* pair interactions

- > N-C pair interaction:
 - Bound and scattering states are treated inconsistently
 - L-dependent and local interaction for bound and excited states

$$V(r) = -V_c f(r, R_0, a_0) + 4\vec{L}.\vec{S}V_{SO}\frac{1}{r}\frac{d}{dr}f(r, R_{SO}, a_{SO})$$

- Energy independent optical potential for all other states in the continuum, with very limited validity (example Koning-Delaroche)
- Properties of the projectile (NC) system taken into account:
 - Separation energies
 - Some low lying states and resonances
- p-C optical potential often unknown

Interplay in acessing **the accuracy of distortion effects**:

Dynamics: accurate treament of terms involving **N-C rescattering contributions Structure:** requires a good description of the N-C interaction

$$D = \frac{\sigma(pn) - \sigma(full)}{\sigma(pn)}$$

E. Cravo, R. Crespo, A. Deltuva, Distortion effects on the neutron knockout from exotic nuclei in the collision with a proton target, PRC 93, 054612 (2016).

Kinematically Semi-inclusive and Inclusive breakup/N-knockout observables @ Current RIB facilities presently

R. Crespo, E. Cravo, A. Deltuva, A. Deltuva, submitted PRC

Faddeev/AGS is well suited for studying reaction mechanisms: Particle fully exclusive (named (p,pN)/QFS): p,N and ^{A-1}X are measured Particle inclusive (named N-knockout): Only ^{A-1}X is measured

Complementary reaction tools

Need to be investigated simultaneoulsy (theoretically & experimentally)

A. Henriques, *Nucleon knockout of ¹¹Be, from the collision with a proton target at high energies* (PhD thesis, Lisboa 2017): **both** particle fully exclusive and particle inclusive were analysed simultaneously.

 $1p_{3/2}$

 $1s_{1/2}$

 $1p_{1/2}$

 $1p_{1/2}$

 $^{1}B(3/2_{1}^{-})+n$

 $^{11}B(1/2_1) + n$

 $|^{11}B(3/2_2) + n\rangle$

p-knockout form ¹²C @ 400 MeV/u

 $|^{A}X\rangle = \mathcal{Z}(3/2^{-}_{1}) |^{A-1}X(3/2^{-}_{1}) \otimes 1p_{3/2}\rangle + \mathcal{Z}(3/2^{-}_{2}) |^{A-1}X(3/2^{-}_{2}) \otimes 1p_{3/2}\rangle + \mathcal{Z}(1/2^{-}_{1}) |^{A-1}X(1/2^{-}_{1}) \otimes 1p_{1/2}\rangle$

R. Crespo, E. Cravo, A. Deltuva, A. Deltuva, submitted PRC

Q1) what is the accuracy of standard DR approaches ?

p-knockout form ¹²C @ 400 MeV/u

R. Crespo, E. Cravo, A. Deltuva, submitted PRC

Reaction framework	$Z(3/2_1^-)$	$Z(1/2_1^-)$	$Z(3/2_2^-)$
FADD/BAU-J	2.52	0.31	0.28
<mark>FADD</mark> /KD- KD	1.85	0.23	0.19
DWIA-EIK	2.11	0.26	0.21

Interaction uncertainty: $\Delta_{max} = 50\%$ \geq

Ryckebush, PRC 88 (2013) 064610.

Reaction model uncertainty: Δ_{max} =30% \triangleright

Q1) what is the accuracy of standard DR approaches ?

Glauber + adiabatic: rescatering terms are treated approximately

Insight on the approximations using the AGS/Faddeev formalism

R. Crespo, A. Deltuva and E. Cravo, PRC 90, 044606 (2014).

p-knockout form ¹²C @ 400 MeV/u

Faddeev/AFS: R. Crespo, E. Cravo, A. Deltuva, submitted PRC

DWIA-Eikonal: T. Aumann, C. Bertulani, Ryckebush, PRC 88 (2013) 064610.

Q2a) what are the structure effects on the description of the gs?

R. Crespo E. Cravo, A. Deltuva, A. Arriaga, R. Wiringa, R. Diego, to be published in Journal Physics G (2018).

Q2b) Importance of good description of core excited states

Valence- shell knockout from ¹¹Be to the ¹⁰Be ground state

Inner -shell knockout from¹¹Be to the ¹⁰Be core excited state

R. Crespo and E. Cravo, *Critical phenomena: Coexistence of valence single particle- and coreexcitations in the* ¹¹*Be halo nucleus*, published in Fewbody systems, Springer (2018).

Structure information is needed !

R. Crespo and E. Cravo, *Critical phenomena: Coexistence of valence single particle- and coreexcitations in the* ¹¹*Be halo nucleus*, published in Fewbody systems, Springe (2018).

Nucleon knockout: reaction and structure

Answer to the Questions:

- 1) What is the **accuracy** of current standard Fewbody DR approaches **?**
 - R: Uncertainties on the potential describing the interactions are large and need to be reduced
- 2) What are the role of the **many body degrees of freedom** in the scattering process?

R: Many body degrees of freedom need to be taken into account

Conclusions and outlook

