Warsaw, January 2018 NUSPRASEN Workshop on Nuclear Reactions

Linking structure and dynamics in (p, pN) reactions induced by exotic nuclei

Antonio M. Moro

Universidad de Sevilla, Spain

In collaboration with:

M. Gómez-Ramos (US, Spain), J. Casal (ECT*, Trento, Italy), K. Yoshida, K. Ogata (RCNP, Japan), A. Deltuva (Vilnius, Lithuania) Motivation A formalism for (p, pN) reactions Festing the reaction model for binary systems Application to Borromean systems

Motivation

- 2 A formalism for (p, pN) reactions
- 3 Testing the reaction model for binary systems
- Application to Borromean systems

Motivation

A formalism for (p, pN) reactions Testing the reaction model for binary systems Application to Borromean systems

Motivation

- 2 A formalism for (p, pN) reactions
- 3 Testing the reaction model for binary systems
- 4 Application to Borromean systems

Motivation

A formalism for (p, pN) reactions Testing the reaction model for binary systems Application to Borromean systems

Accessing the structure of Borromean nuclei

- Understanding the structure of 3-body Borromean nuclei (exotic or not) requires a proper knowledge of the binary sub-systems and excitations/correlations of the core.
- Different reaction observables probe different aspects of these properties. Eg., for ¹¹Li:
 - Exclusive breakup: $^{11}\text{Li} + ^{208}\text{Pb} \rightarrow ^{10}\text{Li} + n + ^{208}\text{Pb}$
 - 1n-transfer: ¹¹Li(p,d)¹⁰Li*
 - 2n-transfer: ¹¹Li(p,t)⁹Li(gs,exc)
 - Knockout: ${}^{11}\text{Li} + \text{A} \rightarrow {}^{10}\text{Li}^* + \text{X} \rightarrow {}^{9}\text{Li} + \text{n} + \text{X}$
 - . . .
- In all these reactions, a crucial aspect is how the structure input is linked to the reaction observables

 $\begin{array}{c} \mbox{Motivation}\\ A \mbox{ formalism for } (p, pN) \mbox{ reactions}\\ Testing the reaction model for binary systems\\ Application to Borromean systems \end{array}$

(p, pN) "knockout" reactions in inverse kinematics

Fast-moving projectile collision with proton target
 One nucleon is removed, leaving the residue in ground or excited state

- High energies to increase mean free path of nucleon inside nucleus
- Structure information inferred from:

Total removal 1N cross sections \Rightarrow spectroscopic factors Momentum distrib. of residue \Rightarrow orbital ang. momentum γ and particle decay of residue \Rightarrow exc. states, resonances, virt. states

- **2** A formalism for (p, pN) reactions
- 3 Testing the reaction model for binary systems

4 Application to Borromean systems

Transfer to the Continuum (TC)

- No IA assumed
- No factorization approximation
- Links dynamics with underlying many-body structure

> Assuming a participant/spectator mechanism the (prior-form) T-matrix is:

$$\mathcal{T}_{if} = \left\langle \phi_B(\xi_B) \Psi_f^{(-)}(\vec{r_p}, \vec{r_N}) \middle| V_{pN} + U_{pB} - U_{pA} \middle| \Phi_A(\xi_A) \chi_{pA}^{(+)}(\vec{R}) \right\rangle,$$

 $\Phi_A(\xi_A) \equiv$ g.s. wave function of the projectile A $\phi_B(\xi_B) \equiv$ continuum wave function of the residual B $\Psi_f \equiv$ final (p + N + B wave function $\chi_{pA} \equiv$ distorted p-A wave

Transfer to the Continuum (TC)

Final wave function

> Expanded in proton-nucleon states (\sim CDCC)

$$\Psi_f(\vec{r}', \vec{R}') \simeq \sum_{n, j^{\pi}} \tilde{\phi}_n^{j^{\pi}}(k_n, \vec{r}') \chi_n^{j^{\pi}}(\vec{K}', \vec{R}')$$

 \succ Basis of discretized bins

$$\tilde{\phi}_{n}^{j^{\pi}}(k_{n},\vec{r}') = \sqrt{\frac{2}{\pi N}} \int_{k_{n-1}}^{k_{n}} \phi_{pN}^{j^{\pi}}(k,\vec{r}') dk.$$

 \succ If we select the (p,d) channel TC reduces to DWBA

$$\Psi_f(\vec{r}', \vec{R}') \simeq \phi_d(\vec{r}') \chi_{d-B}(\vec{R}')$$

Motivation **A formalism for** (p, pN) reactions Testing the reaction model for binary systems Application to Borromean systems

Transfer to the Continuum (TC)

Structure overlaps

• Under the spectator assumption, V_{prior} does not modify B:

$$\mathcal{T}_{if} = \left\langle \Psi_f^{(-)}(\vec{r_p}, \vec{r_N}) \middle| V_{pN} + U_{pB} - U_{pA} \middle| \chi_{pA}^{(+)}(\vec{R}) \varphi_{BA}(\vec{r_N}) \right\rangle$$

with

$$\varphi_{BA}(\vec{r}_N) = \langle \phi_A | \phi_B \rangle$$

(φ_A|φ_B) can in principle be evaluated from many-body wave functions of A and B but, most commonly, will be approximated by some simpler forms, such as single-particle form-factors.

 $\begin{array}{c} & \mbox{Motivation} \\ \mbox{A formalism for } (p, \, pN) \mbox{ reactions} \\ \mbox{Testing the reaction model for binary systems} \\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with 12 C $(p,2p)^{11}$ B data

- 2 A formalism for (p, pN) reactions
- 3 Testing the reaction model for binary systems

4 Application to Borromean systems

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{A formalism for }(p,\ pN) \mbox{reactions}\\ \mbox{Testing the reaction model for binary systems}\\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with $^{12}{
m C}(p,\,2p)^{11}{
m B}$ data

Benchmark with simple SP formfactors

Assume single-particle overlaps:

$$\langle \phi_A | \phi_B \rangle \approx \sqrt{S_{I_c,n\ell j}} \varphi_{n\ell,j}(\vec{r})$$

- Realistic NN interaction from Reid93.
- N-nucleus potentials from folding (Paris-Hamburg g-matrix) or phenomenological OMP's (KD, Dirac).
- Relativistic corrections included approximately.

 $\begin{array}{c} & \mbox{Motivation} \\ \mbox{A formalism for } (p, \, pN) \mbox{ reactions} \\ \mbox{Testing the reaction model for binary systems} \\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with $^{12}{\rm C}(p,\,2p)^{11}{\rm B}$ data

Benchmark with DWIA: ${}^{15}C(p, pn){}^{14}C$ @ 420 MeV/A

Good agreement with DWIA for weakly-bound and deeply-bound nucleons

[K. Yoshida, M. Gómez-Ramos, K. Ogata, A.M.M., arXiv:1711.04458] (collaboration with K. Yoshida and K. Ogata) $\begin{array}{c} \mbox{Motivation}\\ \mbox{A formalism for }(p,\,pN)\mbox{ reactions}\\ \mbox{Testing the reaction model for binary systems}\\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with $^{12}{\rm C}(p,\,2p)^{11}{\rm B}$ data

Benchmark with Faddeev: ${}^{11}Be(p, pn){}^{10}Be$ @ 200 MeV/A

- > Neutron removal from $2s_{1/2}$ and (hypothetical) $1p_{1/2}$ orbitals in ¹¹Be
- Simple Gaussian NN interaction

see Good agreement, but more realistic benchmarks (eg. realistic NN) needed (in progress).

(collaboration with A. Deltuva)

 $\begin{array}{c} & \mbox{Motivation} \\ \mbox{A formalism for } (p, \, pN) \mbox{ reactions} \\ \mbox{Testing the reaction model for binary systems} \\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with $^{12}{\rm C}(p,\,2p)^{11}{\rm B}$ data

Benchmark with Faddeev: ${}^{15}C(p, pn){}^{14}C$ @ 420 MeV/A

(a) With distorting potentials (KD OMP)(b) Without distortion potentials

- Good agreement with Faddeev w/o relativistic corrections
- Relativistic kinematics important at these energies!

Faddeev/AGS calculation from E. Cravo et al, PRC93, 054612 (2016)

 $\begin{array}{c} & \mbox{Motivation} \\ \mbox{A formalism for } (p, \, pN) \mbox{ reactions} \\ \mbox{Testing the reaction model for binary systems} \\ \mbox{Application to Borromean systems} \end{array}$

Benchmarks with DWIA Comparison with Faddeev Comparison with $^{12}\mathrm{C}(p,2p)^{11}\mathrm{B}$ data

Comparison with ${}^{12}C(p,2p){}^{11}B$ @ 400 MeV/A

- SExp. data from GSI: Panin et al., PLB753 (2006)204
- \Rightarrow Momentum distributions summed over ¹¹B b.s. $(I_c^{\pi}=3/2_1^-, 1/2_1^-, 3/2_2^-)$
- $\Rightarrow \text{ HF-constrained SP overlaps for } \langle ^{12}\text{C}|^{11}\text{B}(I_c^{\pi})\rangle \approx \sqrt{S_{I_c,n\ell j}}\varphi_{n\ell,j}(\vec{r})$

$$\sigma_{\text{-ln}} = \sum_{I_c, n\ell, j} S_{I_c, n\ell j} \times \sigma_{sp}^{I_c, n\ell j}$$

σ_{exp}	$\sigma_{\rm th}(*)$	$R_s(**)$
(mb)	(mb)	$(\sigma_{exp}/\sigma_{th})$
19.2(18)(12)	27.81	0.69
(*) Shell-model (WBT) SFs (**) "Quenching" factor.		

Motivation	TC model for 3-body projectiles
A formalism for (p, pN) reactions	Application to ¹¹ Li(p,pn) ¹⁰ Li
Festing the reaction model for binary systems	Application to ¹¹ Li(p,d) ¹⁰ Li @ 5.7 MeV/u
Application to Borromean systems	

Motivation

- 2 A formalism for (p, pN) reactions
- ③ Testing the reaction model for binary systems
- Application to Borromean systems

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{A formalism for } (p, pN) \mbox{ reactions} \\ \mbox{Testing the reaction model for binary systems} \\ \mbox{Application to Borromean systems} \\ \mbox{Application to Borromean systems} \\ \mbox{Application to Borromean systems} \\ \mbox{Application to 14} \mbox{Be}(p,pn)^{13} \mbox{Be} \\ \mbox{Be}(p,pn)^{13} \mbox{Be} \\ \mbox{Application to 14} \mbox{Be}(p,pn)^{13} \mbox{Be} \\ \mbox{Applica$

ALADIN-LAND setup at GSI

[Aksyutina et al., PLB 666 (2008) 430]

➢ spectroscopic information extracted through fitting with assumed shapes (eg. Breit-Wigner)

reaction dynamics not considered

*More recent data from RIKEN is coming

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{A formalism for }(p,\ pN) \mbox{ reactions}\\ \mbox{Testing the reaction model for binary systems}\\ \mbox{Application to Borromean systems} \end{array}$

TC model for 3-body projectiles Application to 1^{-1} Li(p,pn) 1^{-0} Li Application to 11 Li(p,pd) 0 Li @ 5.7 MeV/u Application to 1^{-4} Be(p,pn) 1^{-3} Be

TC for 3-body projectiles

- 3-body structure explicitly included
- Participant (N₁) / spectator (B) assumption

 $\begin{array}{c} C \\ N_2 \vec{x} \\ \vec{y} \\ N_1 \end{array} \\ P \end{array} \Rightarrow \begin{array}{c} N_2 \vec{x} \\ C \\ \vec{k}' \\ \vec{k}'$

Prior-form transition matrix:

$$\mathcal{T}_{if} = \left\langle \varphi_B^{2b}(\vec{q}, \vec{x}) \Psi_f^{(-)}(\vec{r}', \vec{R}') \middle| V_{pN_1} + U_{pB} - U_{pA} \middle| \Phi_A^{3b}(\vec{x}, \vec{y}) \chi_{pA}^{(+)}(\vec{R}) \right\rangle,$$

where

 $\varphi_B^{2b}(\vec{q}, \vec{x}) \equiv \text{continuum wave function of the binary fragment } B$ $\Psi_f \equiv \text{final } p + (N_2 + B) \text{ relative wave function}$ $\Phi_A^{3b} \equiv \text{g.s.}$ wave function of the initial 3b composite A $\chi_{pA} \equiv \text{distorted } p\text{-}A$ wave

[M. Gómez-Ramos, J. Casal, A.M.M., PLB 772 (2017) 115]

Motivation A formalism for (p, pN) reactions Testing the reaction model for binary systems Application to Borromean systems

3b g.s. wave function of $A \Rightarrow HH$ expansion

$$\begin{split} \beta &\equiv \{K, l_x, j_x, j_1, l_y, j_2\} \\ \vec{l}_x + \vec{s}_2 &= \vec{j}_x, \quad \vec{j}_x + \vec{l} = \vec{j} \\ \vec{l}_y + \vec{s}_1 &= \vec{j}_2, \quad \vec{j}_1 + \vec{j}_2 = \vec{j} \end{split}$$

Diagonalize \mathcal{H}_{3b} in THO basis using:

[J. Casal et al, PRC 88 (2013) 014327]

- Binary interactions C- N_i , N_1 - N_2
- Three-body force to fine-tune g.s. energy

$$\Phi_A^{3b,j\mu}(\vec{x},\vec{y}) = \sum_\beta w_\beta^j(x,y) \left\{ \left[\mathcal{Y}_{l_x s_2 j_x}(\hat{x}) \otimes \phi_I \right]_{j_1} \otimes \left[Y_{l_y}(\hat{y}) \otimes \chi_{s_1} \right]_{j_2} \right\}_{j_1}$$

> 2-body WF φ_B^{2b} consistently computed with the same N-C potential

A.M. Moro, NUSPRASEN, Warsaw, 2018

Motivation A formalism for (p, pN) reactions Testing the reaction model for binary systems Application to Borromean systems IC model for 3-body projectiles Application to $\begin{array}{c} 11 \text{ Li}(p,pn) \\ 10 \text{ Li} \\ \text{Application to } 11 \text{ Li}(p,d) \\ 10 \text{ Lj} \\ \text{ Qplication to } 14 \text{ Be}(p,pn) \\ 13 \text{ Be} \end{array}$

Sensitivity to the structrure model

- P3: reference model
- P4: virtual state at higher *E p* resonance at lower *E*
- P5: with d resonance ~ 1.5 MeV

	$^{a}_{(fm)}$	$E_r[p_{1/2}] \ ({\sf MeV})$	$E_r[d_{5/2}]$ (MeV)
P3	-29.8	0.50	4.3
P4	-16.2	0.23	4.3
P5	-29.8	0.50	1.5

	$%s_{1/2}$	$p_{1/2}$	$d_{5/2}$
P3	64	30	3
P4	27	67	3
P5	39	35	23

 \mathbb{F} P5 consistent with data, but there is no experimental evidence of such a low $d_{5/2}$ resonance

A formalism for (p, pN) reactions A formalism for (p, pN) reactions Testing the reaction model for binary systems Application to 14 Li(p, p.n) 10 Li (p. 3 + 0.1) Li

Calculations including ⁹Li spin; $I^{\pi} = 3/2^{-}$

Data from Aksyutina et al. [PLB 666 (2008) 430]

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{A formalism for }(p,\ pN)\ reactions\\ \mbox{Testing the reaction model for binary systems}\\ \mbox{Application to Borromean systems} \end{array}$

TC model for 3-body projectiles Application to 11 Li(p,pn) 10 Li Application to 11 Li(p,d) 10 Li @ 5.7 MeV/u Application to 14 Be(p,pn) 13 Be

Testing the model in 11 Li $(p,d){}^{10}$ Li @ 5.7 MeV/u

Data: IRIS at TRIUMF, 5.7 MeV/u, Sanetullaev et al. [PLB 755 (2016) 481]

 \Rightarrow Same model gives good agreement on (p, pn) and (p, d) reactions \Rightarrow weight $p_{1/2}$: 31%

¹⁴Be (¹²Be + n + n)

Ground state $j^{\pi} = 0^+$, separation energy $S_{2n} \simeq 1.3$ MeV

Excited $^{12}{\rm Be}$ components in the ground-state wave function of $^{14}{\rm Be}$ are essential

Inclusion of core excitations needed !!

e.g.: rotational model in NPA 733 (2004) 53 by Tarutina *et al.* to couple $0_1^+, 2_1^+$ states

RIKEN data 69 MeV/u (invariant mass + γ coincidences)

 \succ $^{13}{\rm Be}$ decay to $^{12}{\rm Be}$ excited states observed with $\gamma\text{-coincidences}$

[Kondo et al., PLB 690 (2010) 245]

 \blacksquare Peak dominated by $\ell = 1$ resonance

GSI data (304 MeV/u)

[Aksyutina et al., PRC 87 (2013) 064316]

Simultaneous fit of both sets:

1) $l = 0, 1/2^+$ 2) $l = 1, 1/2^-$ 3) $l = 2, 5/2^+$ 4) $l = 1, 1/2^-$ 5) l = 2, ?a) decay $5/2^+ \rightarrow {}^{12}\text{Be}(2^+)$ b) decay into ${}^{12}\text{Be}(1^-)$

Peak dominated by $\ell = 0$ "resonance"

Structure model for $^{14}\mathrm{Be}$ and $^{13}\mathrm{Be}$

Deformed ${}^{12}\text{Be} + n$ potential with core couplings in a rotational model

- Only 0^+ (g.s.) and 2^+ (2.1 MeV) of ¹²Be included. Deformation parameter $\beta_2 = 0.8$ [Tarut
- V(l = 0, 2) and V_{ls} adjusted to give:
 - near-threshold $1/2^+$ virtual state
 - $5/2^+$ resonance at $\sim 2~{
 m MeV}$
- Shallow V(l = 1) for simplicity
- Three-body calculations:

¹⁴Be (12 Be + n + n) 0^+ g.s. fixed at $S_{2n}(exp) \simeq 1.3$ MeV

About 60% of $l_x=0$ and 35% of $I=2^+$

[Tarutina et al. NPA 733 (2004) 53]

Comparison with GSI's data (304 MeV/u)

- \Rightarrow Momentum distribution of peak consistent with assumed model and $\ell=1$ dominance
- > Not consistent with original interpretation by Aksyutina et al.!

Motivation	
A formalism for (p, pN) reactions	
Festing the reaction model for binary systems	Application to ¹¹ Li(p,d) ¹⁰ Li @ 5.7 MeV/u
Application to Borromean systems	Application to ¹⁴ Be(p,pn) ¹³ Be

- We have developed a new framework (TC) to describe (p, pN) reactions:
 - > Structure information contained in $\langle B|A \rangle$ overlaps.
 - Provides absolute cross sections.
 - No IA approximation (can be used at low energies).
- Benchmarks with "two-body" projectiles show good agreement with DWIA and Faddeev methods

Next step: comparison with new R3B systematic data

- Three-body projectiles, with no core excitations:
 - Comparison with ¹¹Li(p, pn)¹⁰Li GSI's data highlights the importance of the spin of ⁹Li in the ¹⁰Li spectrum.
 - Consistent description of (p, pn) and (p, d) data in completely different energy regimes.
- Three-body projectiles, with core excitations:
 - Comparison with ${}^{14}\text{Be}(p,pn){}^{13}\text{Be}$ data from GSI and RIKEN suggest dominance of $\ell = 1$ (1/2⁻) decay of ${}^{13}\text{Be}$ (better models required!)
- Future work: other systems (⁸He, ¹⁷B, ¹⁷Ne ...) and observables (momentum profiles, angular correlations, ...)

Recent advances and challenges in the description of nuclear reactions at the limit of stability

ECT* Workshop 5-9 March 2018

Trento, Italy

Pierre Capel José A. Lay Jesús Casal Antonio M. Moro

