Structure and reactions of one-neutron halo nuclei

F. Barranco
Sevilla University

R.A. Broglia
The Niels Bohr Institute, Copenhagen

A. Idini
Surrey University

G. Potel
Michigan State University

E. Vigezzi
INFN Milano
The critical description of the experimental results from complementary approaches could be of extreme interest.

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?

TRIUMF

11Be within NCSMC: Discrimination among chiral nuclear forces

![Diagram showing the energy levels and parity inversion in 11Be](image)
Can we obtain an alternative description in terms of elementary modes of excitation?

Independent Particles

Collective Phonons

Particle-vibration coupling

Hartree-Fock mean Field

Random Phase Approximation
Parity inversion in N=7 isotones is not reproduced by spherical mean field calculations

Typical spherical mean-field results with Skyrme forces
(Sagawa,Brown,Esbensen PLB 309(93)1)
A possible explanation of parity inversion: dynamical coupling between the core and the loosely bound neutron

The core: spherical or deformed?
Important role of fluctuations expected
We propose a dynamical description

Myo et al, PRC 86 (2012) 024318
The admixture of $d_{5/2} \times 2^+$ configuration in the $1/2^+$ g.s. of ^{11}Be is about 15%.

$^{9}\text{Be}(^{11}\text{Be},^{10}\text{Be}+\gamma)X$

$^{p}(^{11}\text{Be},^{10}\text{Be})d$

T. Aumann et al. PRL 84 (2000) 35

Basic effect of particle-vibration coupling on the single-particle energies close to the Fermi energy

\[L = \frac{h^2(j,j',L)}{e_j - (e_{j'} + \hbar \omega_\lambda)} < 0 \]

\[+ \]

\[h^2(j,j',L) = \frac{(e_j - e_{j''} + \hbar \omega_\lambda)}{\omega_{\lambda}} > 0 \]

From B(EL) experimental value

\[h(a, b\lambda) = \frac{1}{\sqrt{4\pi}} \langle j_a \lambda | j_b \rangle \beta_\lambda \left(j_a \left| \frac{\partial U}{\partial r} \right| j_b \right) \]
^{11}Be

$E_{\text{shift}} = -2.5 \text{ MeV}$

$s_{1/2}$

$d_{5/2}$

$s_{1/2}$

2^+

$E_{\text{shift}} = +2.5 \text{ MeV}$

Self-energy

Pauli blocking of core ground state correlations

Level inversion
Ingredients of our calculation

\[
B(E2) = 10.4 \pm 1.2 \text{ e}^2 \text{ fm}^4
\]

\[
\beta_{em} = 1.12 \quad \beta_n \approx 0.9
\]

Fermionic degrees of freedom:

- \(s_{1/2}, p_{1/2}, p_{3/2}, d_{5/2}\) Wood-Saxon levels in a box

Bosonic degrees of freedom:

- \(2^+, 3^-\), pair vib. QRPA solutions tuned to reproduce available exp. data

\[\text{(Saxon - Woods + spin - orbit)}\]
We perform the many-body calculation starting from a Woods-Saxon potential, with a spatially dependent effective mass, with

\[m_k(r=0) = 0.7 \text{ m}, \ m_k(r \gg R) = \mu = 0.91 \text{ m} \]

The following parameters are fitted to obtain the best agreement of the renormalized energies with the experimental \(\frac{1}{2}^+, \frac{1}{2}^- \) and \(\frac{5}{2}^+ \) states in \(^{11}\text{Be}\) and \(\frac{3}{2}^- \) in \(^{9}\text{Be}\):

- Depth, diffuseness, radius, strength of spin-orbit coupling
\[\sqrt{0.83}|s_{1/2} > + \sqrt{0.17}|(d_{5/2} \otimes 2^+)_{1/2} >\]

\[\sqrt{0.81}|p_{1/2} > + \sqrt{0.02}|(d_{5/2} \otimes 3^-)_{1/2} > + \sqrt{0.15}|((p_{1/2}, 1p_{3/2}^-)_{2+} \otimes 2^+) p_{1/2} >\]

\[\sqrt{0.34}|d_{5/2} > + \sqrt{0.32}|(s_{1/2} \otimes 2^+)_{5/2} > + \sqrt{0.34}|(d_{5/2} \otimes 2^+)_{5/2} >\]
Strength of the dipole transition between $\frac{1}{2}+$ and $\frac{1}{2}-$ states

$M(E1) X$

1.95 e fm

-0.26 e fm

-0.19 e fm

$B(E1) (\text{th.}) = 0.11$ e2 fm2

$B(E1) (\text{exp.}) = 0.102 \pm 0.002$ e2 fm2

This result is sensitive to the details of the mean field potential
Isotopic shift of the charge radius

\[
\langle r^2 \rangle_{10\text{Be}}^{\frac{1}{2}} = 2.361 \pm 0.017 \text{ fm} \quad \langle r^2 \rangle_{11\text{Be}}^{\frac{1}{2}} = 2.466 \pm 0.015 \text{ fm}
\]

Single-particle picture: \(S=1 \)

Many-body picture: \(S=0.83 \)

\[
\langle r^2 \rangle_{11\text{Be}} = \left(\langle r^2 \rangle_{10\text{Be}} + \frac{\langle r^2 \rangle_{1s1/2}^{1/2}}{11} \right)^2 \times S^2 + (1 - S^2) \times \left(\langle r^2 \rangle_{10\text{Be}} \left(1 + \frac{2}{4\pi} \beta^2 \right) + \frac{\langle r^2 \rangle_{d5/2,\text{coll}}^{1/2}}{11} \right)^2 = .
\]

\[
\langle r^2 \rangle_{10\text{Be}} + \frac{\langle r^2 \rangle_{1s1/2}^{1/2}}{11} \times S^2 + (1 - S^2) \times \left(\frac{\langle r^2 \rangle_{d5/2,\text{coll}}^{1/2}}{11} \right)^2 + \frac{\langle r^2 \rangle_{10\text{Be}}}{4\pi} \beta^2 \left(2 \right)
\]

\(\Delta \langle r^2 \rangle_{11\text{Be}}^{\frac{1}{2}} \text{ (th.)} = 0.12 \text{ fm} / 0.27 \text{ fm} \)

\(\Delta \langle r^2 \rangle_{11\text{Be}}^{\frac{1}{2}} \text{ (exp.)} = 0.11 \text{ fm} \)
Matrix elements due to GSC Pauli rearrangement

The contribution of a given p-h configuration to the GS Correlation Energy is (B&Mill)

\[\delta E = \frac{-\hbar_{ai,bk,\lambda} \sqrt{2j_a+1}}{0 - (E_{ai} + E_{bk} + \hbar \omega_{\lambda})} < 0 \]

The presence of a new neutron (scattering- or bound-like) inhibits some of these correlations, producing an energy modification of the core state...

\[-\frac{\delta E}{2j_a+1} > 0 \]

This is the meaning/value of the NFT self energy diagram (B&Mill, eq.6.225)

\[\frac{-1}{E_{ai} - (2E_{ai} + E_{bk} + \hbar \omega_{\lambda})} \left\langle \left((j_{a1}, j_{a2}) J = 0, j_{a3} ; j_a \right| (j_{a1}, j_{a3}) J = 0, j_{a2} ; j_a) \right\rangle \]

\[= \frac{(\hbar_{ai,bk,\lambda})^2}{(E_{ai} + E_{bk} + \hbar \omega_{\lambda})} \]
One more auxiliary GSCPR channel.

\[\psi_{jama} = [\psi_{jama}^x + \psi_{jama}^C \Gamma^{\lambda+}] \psi_{jama} \Phi_{GS} \]

but if

\[\psi_{\text{GS}} = [1 + \epsilon \psi_{j_{\text{a,occ}}}^{-1} \psi_{j_{\text{b}}}^{x} \Gamma^{\lambda+}]_{j_{\text{a}}} \psi_{j_{\text{a}}} \psi_{j_{\text{b}}}^{x} \Gamma^{\lambda+}]_{j_{\text{b}}} \psi_{j_{\text{b}}}^{x} \Gamma^{\lambda+}]_{j_{\text{c}}} + \cdots \Phi_{GS}^{HF} \]

\[a \text{ new term } l \text{ must be added} \]

\[\psi_a = [\psi_a^x + \psi_b^{D \Gamma^{\lambda+}}]_{j_{\text{a}}} \psi_a^{y} - [\psi_c^{D \Gamma^{\lambda+}}]_{j_{\text{c}}} + \cdots \Phi_{GS} \]

with the hole anihilator

\[\psi_a^{y} = (\psi_a^{y}(r)/r) \Theta_{j_{\text{a}}} \]

\[\psi_a^{y}(r) = \sum_i y_{ai} R_{ai}^{(r)} ; e_{ai} < e_F \]

GSC Pauli rearr.:

An auxiliary Coupled Channel

\[
\begin{pmatrix}
H_p - e_F & \Xi_{a,b,\lambda} f(r) & 0 & \Xi_{a,c,\lambda} f(r) & \Xi_{a,b,\lambda} f(r) & \Xi_{a,c,\lambda} f(r) \\
\Xi_{a,b,\lambda} f(r) & H_p - e_F + \hbar \omega & \Xi_{a,b,\lambda} f(r) & 0 & \Xi_{a,c,\lambda} f(r) & \Xi_{a,c,\lambda} f(r) \\
0 & \Xi_{a,b,\lambda} f(r) & (H_p - e_F) & -\Xi_{a,c,\lambda} f(r) & -\Xi_{a,c,\lambda} f(r) & -\Xi_{a,c,\lambda} f(r) \\
\Xi_{a,c,\lambda} f(r) & 0 & -\Xi_{a,c,\lambda} f(r) & (H_p - e_F) & -\Xi_{a,c,\lambda} f(r) & -\Xi_{a,c,\lambda} f(r)
\end{pmatrix}
\]

\[\begin{pmatrix}
u_a^x \\
u_b^x \\
u_c^x \\
u_b^y \\
u_a^y \\
u_c^y
\end{pmatrix} = \begin{pmatrix}
u_a^x \\
u_b^x \\
u_c^x \\
u_b^y \\
u_a^y \\
u_c^y
\end{pmatrix}
\]

Creation of a neutron in an "occupied" level \(j_{\text{a}} \) level may/will give a nonnull contribution

p-h + phonon "virtual" excitations with respect to the HF GS.
10Be(d,p)11Be at $E_d = 21.4$ MeV

Test of the single-particle component of the many-body wavefunction

Form factors

Cross sections

K.T. Schmitt et al., PRC88 (2012) 064612
\[^{11}\text{Be}(1/2^+) (p,d)^{10}\text{Be}(2^+) \]

Test of the collective component \(R^C_{d5/2} \) of the many-body wavefunction (but we should calculate the optical potential microscopically!)

\[(\psi^C_b \otimes \Gamma^+_\chi)_{j_\alpha} = (R^C_b (r)/r)(\Theta_{j_b} \otimes \Gamma^+_\chi)_{j_\alpha} \]

d5/2 phase shift in the bare potential

Renormalized 5/2+ phase shift

\[E_{\text{res}} = 6.5 \text{ MeV} \]

\[E_{\text{res}} = 1.25 \text{ MeV} \]
\[\Gamma = 160 \text{ keV} \]
The usually quoted value of width of the 5/2+ resonance (100 keV) is derived from $^9\text{Be}(t,p)^{11}\text{Be}$ spectra

The width from $^{10}\text{Be}(d,p)^{11}\text{Be}(5/2^+)$ spectra is much larger and is well reproduced by theory.
It is possible to obtain a quantitative description of the structure and of the reactions of ^{11}Be, based on the dynamical coupling of particles and vibrations, taking properly into account ground state correlations.

Extend the calculations and check theory in neighbouring nuclei $^{11}\text{N}, (^{10}\text{Li}, ^{12}\text{B}, ^{13}\text{C})$.
Basic effect of particle-vibration coupling on the single-particle energies close to the Fermi energy:

\[
\begin{align*}
\text{(A)} & \quad L = \frac{h^2(j,j',L)}{e_j - (e_{j'} + \hbar \omega \lambda)} < 0 \\
\text{(B)} & \quad L = \frac{h^2(j,j',L)}{e_j - e_{j''} + \hbar \omega \lambda} > 0
\end{align*}
\]

This is a UNIVERSAL RESULT: Green’s function, Equations of Motion, in general any many-body theory based on single-particle picture.
V_0 = 70\text{MeV}
\quad a = 0.81\text{fm}
\quad R = 2.1\text{fm}

Two Phonon Anharmonicities

Butterfly Diagrams

\begin{align*}
E(\text{MeV})
\end{align*}

- 5/2^+: a |d5/2\rangle + b |s1/2\times2\rangle + c |d5/2\times2\rangle
- 1/2^+: A |s1/2\rangle + B |d5/2\times2\rangle
- 1/2^-: \alpha |p1/2\rangle + \beta |p3/2\times2\rangle

0th (Bare) 1st Rainbow 3rd

PAULI!

PAULI!
Microscopic description of superfluid nuclei beyond mean field: iterating the PVC with Nambu-Gor’kov formalism

by extending the Dyson equation…

\[G^{-1}_\mu = (G^0_\mu)^{-1} - \Sigma_\mu (\omega) \]

… to the case of superfluid nuclei (Nambu-Gor’kov), it is possible to consider both:

F. Barranco et al., EPJ A21 (2004) 57
A. Idini et al., PRC 85 (2012) 014
cf. V. Soma’, C. Barbieri, T. Duguet,
PRC 84 (2011) 064317; PRC 87 (2013) 011303
Based on this approach, we could calculate several nuclear structure observables in 120Sn with a 10% error.

<table>
<thead>
<tr>
<th>Observables</th>
<th>Opt. levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ (keV)</td>
<td>50 (3.5 %)</td>
</tr>
<tr>
<td>E_{qp} (keV)</td>
<td>45 (4.5 %)</td>
</tr>
<tr>
<td>Mult. splitt. (keV)</td>
<td>59 (8.4 %)</td>
</tr>
<tr>
<td>$d_{5/2}$ (centr.) (keV)</td>
<td>40 (4%)</td>
</tr>
<tr>
<td>$d_{5/2}$ (width) (keV)</td>
<td>8 (1%)</td>
</tr>
<tr>
<td>$B(E2)/B_{sp}$</td>
<td>1.43 (14%)</td>
</tr>
<tr>
<td>$\sigma_{2n}(p,t)$ (mb)</td>
<td>40 (2%)</td>
</tr>
</tbody>
</table>