

Four-nucleon Systems in Experiment and Theory

Adam Kozela

for PolHel3 Collaboration

Outline

- □ 3-nucleon force (3NF) very short intro
- □ 3NF in 4-nucleon systems why interesting?
- Selected results of *dd* scattering BINA@KVI
- New proposal for p³He experiment CCB, Kraków

High precision nucleon-nucleon potentials

	# parameters	χ ² /ndf pp	χ ² /ndf np	³ H Eb [MeV]
CD Bonn	45	1.01	1.02	8.00 ^{*)}
Nijm I	41	1.03	1.03	7.72
Nijm II	47	1.03	1.03	7.62
Av18	~40	1.35	1.07	7.62
Reid93	~40	1.02	1.03	7.63
Experiment		~3000 points	~3000 points	8.48

A. Kozela

3-nucleon force

 $\Delta \frac{\pi}{\pi}$

- J.Fujita, H.Miyazawa,
 Prog. Theor. Phys. 17 (1957) 360
- Tucson-Melbourne (TM)
- 🗆 Urbana IX
- 🗆 CD Bonn + 🛆
- 🗅 Illonois
- Chiral Perturbation Theory

	2N force	3N force	4N force	
LO	XH	—	—	(Q/∧ _x)⁰
NLO	ХМАМЦ	_	_	(Q/∧ _X)²
N²LO		HH HX X		(Q/∧ _X)³
N ³ LO	X 4 4 4	掛 ₩ ‡Х-	1141-	(Q/∧ _x)⁴

3-nucleon force in action - binding energy

EB [MeV]	³Н	³ He	⁴He
Potencjały NN	7.62	7.07	24.2
CD Bonn + 🛆	8.36	7.64	28.4
Nijm II + TM99	8.48	7.72	28.5
Av18 + TM99	8.48	7.76	28.8
CPT, NNLO (+3NF)	8.68	7.81	29.9
Experiment	8.48	7.72	28.4

Binding of t and He-isotopes perfectly reproduced – no need for 4-nucleon force

Combination of Av18 and 3NF (ILL2) give good description of many energy levels of nuclei up to $^{12}\mathrm{C}$

S. Pieper Nucl.Phys. A751, 516c (2005)

NUPRASEN 2018

A. Kozela

3-nucleon force in action - elastic scattering

Realistic potentials NN fail in description of differential cross section for elastic scattering d(p,p)d.

Supplemented with 3NF (TM) perform much better. A. Kozela NUPRASEN 2018

p(d,pp)n breakup reaction at 130 MeV

Cross Section Results - 3NF & Coulomb Effects

 $\sigma_{\rm th}\,)/\sigma_{\rm exp}$ ٥ ٥ ٥ ٥ 0.1 (σ_{exp} Including **3NF** effects 0 improves the agreement ٥ with the data at low Erel values The best agreement is Data vs. AV18 -0.1 reached when both, Data vs. AV18 + UIX the Coulomb force and the **3NF** are taken Data vs. AV18 + UIX + Coulomb into account! -0.25 10 15 20 25 30 N E_{rel} [MeV]

Four-nucleon system relevance to 3NF

higher sensitivity (than in 3N systems) for 3NF

many input and output channels
 chance for investigation of isospin dependencies (T=3/2)

role of 4NF ? 2NF>>3NF>>4NF

Four-nucleon system relevance to 3NF

p ³He elastic scattering

In 3N system effects of 3NF observed at 60 MeV

In 4N system already at about
 30 MeV

A. Deltuva and A. C. Fonseca, Phys. Rev. C 87, 054002, 2013

dd \rightarrow dpn breakup at 135 and 160 MeV BINA@KVI

□ data at 135 MeV – good agreement for analyzing power but confusing results for differential cross section – normalization ?

□ Sample results for 160 MeV, $\vartheta_p = 20^\circ$, $\vartheta_n = 22^\circ$:

dp-QFS regime
 Calculations within Single Scattering Approximation
 A. Deltuva, A.C. Fonseca Phys.Rev.C 044001 (2016)

dd \rightarrow ³He n Proton transfer reaction at 160 MeV

- Relative normalization to the elastic scattering data
- Good agreement with existing measurement

J. Kuboś, MSc Thesis 2017

NUPRASEN 2018

No theory available

New project for p³He experiment main goal

Precise, kinematically complete measurement of vector analyzing powers_ and differential cross sections for the p + ³He elastic scattering and breakup reactions with the use of the polarized Helium-3 target, in a wide range of phase-space and proton energy range of 60 -230 MeV.

Planned for Cyclotron Center Bronowice, Kraków

Experimental principle

Channels available for exclusive experiment

 $p^{3}He \rightarrow p^{3}He$ $p^{3}He \rightarrow p d n$

 $p^{3}He \rightarrow pppn$

Counting rate estimate for elastic scattering at

\Box Real cross section and symmetric geometry ($\alpha_L = \alpha_R = 55^\circ$)

- Reaction kinematics
- □ ³He detection energy threshold 20MeV
- □ CCB beam distribution ~100pA
- \Box Binning in polar angle: $\Delta \vartheta = 1^{\circ}$

Ongoing activities and beam time request

Mechanical tests of scattering cell and different window foils

Tests of polarizing cell

and tests of prototype

A. Kozela

NUPRASEN 2018

THANK YOU

A. Kozela NUPRASEN 2018

p-³He elastic scattering Calculations at 70 MeV

A. Deltuva private communications

Single Scattering Approximation

- Lowest order term in the Neumann series expansion of Alt, Grassberger, Sandhas (AGS) equation
- Full 3N dynamic in dp system and not interacting spectator
- \Box Different force models applicable (CD Bonn, CD Bon+ Δ , AV18)
- Also valid for elastic scattering

Multiwire Drift Chambers

□ As thin as possible

6 measuring planes with 3 directions

of wires – full 3D reconstruction

- Position resolution < 200 µm</p>
- Energy loss information
 - time over threshold
 - signal integral

High rate capable (short drift distance)

Polarized ³He target

