3-Nucleon Force in Proton Polarized Helium-3 Scattering Feasibility Studies

I. Ciepał¹⁾, I. Skwira-Chalot⁴⁾, B. Głowacz²⁾, A. Kozela¹⁾, J. Kuboś¹⁾, P. Kulessa¹⁾, T. Pałasz²⁾, W. Parol¹⁾, E. Stephan³⁾, B. Włoch¹⁾, J. Zejma²⁾

¹⁾ Henryk Niewodniczański Institute of Nuclear Physics PAS, Krakow
²⁾ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow
³⁾ August Chełkowski Institute of Physics, University of Silesia, Chorzow
⁴⁾ Faculty of Physics, University of Warsaw, Warsaw

Available models of nucleon-nucleon potential reached perfect agreement with experimental data obtained for systems composed of two nucleons [1, 2], but description of systems containing third nucleon, still pose a great challenge even with implementation additional dynamics -- three-nucleon force (3NF). The idea of examining four-nucleon system gives quite new possibilities for 3NF studies and appearing here 4-nucleon force. Brand new theoretical approaches [3] call for validation.

We propose to enter four-nucleon systems area by performing kinematically complete measurement of proton scattering on polarized helium-3 (elastic and breakup channels). The proposed method, involving tracking of reaction products for subsequent reconstruction of the reaction vertex, should be regarded as a novel experimental approach in this low energy nuclear physics experiment. The details of a proposed experimental setup and results of the first tests of its components will be given.

References

- [1] P.U. Sauer et al., Phys. Rev. C 68, 024005 (2003).
- [2] M. Viviani et al., Phys. Rev. Lett. 86, 3739 (2001).
- [3] A. Deltuva et al., Phys. Rev. C 93, 044001 (2016)