Direct Reactions at Stable Beam Facilities

The absolute magnitude of the α -particle clustering in heavier nuclei, as expressed by the spectroscopic factor S_{α} , remains poorly determined. Absolute values of S_{α} extracted from the traditionally employed (⁶Li,d) and (⁷Li,t) α -transfer reactions are notoriously variable, indicating that the reaction mechanism is also poorly understood; alternative reactions have not been completely explored to date. Much important work in this area remains to be done with stable beam facilities, particularly systematic studies of the variation in α -clustering along isotopic chains.

As an example we take a hypothetical study of α -particle clustering in Ar and Ca isotopes probed by various α -particle transfer reactions: (⁶Li,d), (⁷Li,t), (¹⁶O,¹²C) and (²⁰Ne,¹⁶O) and their inverse reactions. Estimates of cross sections are compared and some of the requirements for experimental conditions and equipment are discussed.