Point and integrated yield in the GOSIA code

Kasia Wrzosek-Lipska, Technische Universitaet Darmstadt, 16-27.05.2011

OUTLINE

Our goal is to calculate gamma yieds

- What the yield is ?
 Point Yield vs. Integrated Yield
- What they are needed for ?
- What is needed to calculate it ?
 - Definition of the nucleus considered
 - Definition of the experiment

YIELD

GOSIA recognizes two types of yields:

- Point yields calculated for:
 - Excited levels layout
 - Collision partner
 - Matrix element values
 - CHOSEN particle energy and scattering angle
- Integrated yields calculated for:
 - -(... as above but ...)
 - A RANGE of scattering angles and energies

POINT YIELD

How **GOSIA** does it?

- Assumes nucleus properties and collision partner;
- starts with **experimental conditions** (angle, energy) and **matrix element set**
- solves differential equations to find level populations;
- calculates **deexcitation** using gamma detection geometry, angular distributions, deorientation and internal conversion into acount.

POINT YIELD

- are fast to be calculated...
- ...so they are used at minimisation stage
- **OP,POIN** if one needs a quick look

 but are good for one energy and one (particle scattering) angle

¹⁸⁸₈₀Hg beam bombarding ¹⁰⁷₄₇Ag target

INTEGRATED YIELD

- are something close to reality – reproduction of the experimentally observed yields requires integration over scattering angles and energy
- but quite **slow** to calculate **(OP,INTG)**

YIELD CORRECTION

- Correction Factors can be found by comparison of calculated point and integrated yields. $rac{Y_P}{P}$
- Corrected yield: $\mathbf{Y}_{exp}^{c} = \mathbf{Y}_{exp} \cdot \mathbf{CF}$
- Correcting the yield is like averaging point yields over energy and angular range,
 - so the better the choice of mean energy/angle,
 Correction Factor is closer to 1.
- One needs as many C.F.s as gamma yields

 $^{32}S + ^{100}Mo, \Theta_{\text{scattering}}: 110^{0} - 160^{0}$

EXPERIMENT 1 DETECTOR 1

NI	NF	YEXP	YCOR	COR.F	Θ=140°	E=82 MeV
766544432	52321 2321	.567E+03 .729E+03 .141E+04 .552E+05 .148E+05 .308E+05 .491E+03 .450E+05 .106E+07	.564E+03 .659E+03 .168E+04 .627E+05 .161E+05 .298E+05 .536E+03 .374E+05 .106E+07	.995E+00 .904E+00 .119E+01 .114E+01 .109E+01 .969E+00 .109E+01 .831E+00 .100E+01		
EXPERIMENT 1 DETECTOR 1						
NI	NF	YEXP	YCOR	COR.F	0=125	
766544432	523212321	.567E+03 .729E+03 .141E+04 .552E+05 .148E+05 .308E+05 .491E+03 .450E+05 106E+07	.304E+02 .484E+02 .183E+01 .286E+06 .202E+03 .875E+05 .221E+02 .186E+06 106E+07	.537E-01 .664E-01 .130E-02 .517E+01 .137E-01 .284E+01 .451E-01 .414E+01		

YIELD CORRECTION

- Correction depends on the matrix element set so it is usually performed after satisfactory initial set is found.
- Minimisation is usually performed using corrected yields
- After minimisation, another correction should be performed with the new found **matrix element set** so the process is **recursive** but converges very well.

YIELD

- GOSIA calculates yields as differential cross sections, integrated over in-target particle energies and particle scattering angles
 - 'differential' in γ but **integrated** for particles
- The 'GOSIA yield' may be understood as a mean differential cross section multiplied by target thickness (in mg/cm²)

$[Y]=mb/sr \times mg/cm^2$

Integration with OP,INTG

Few hints:

- Integration over angles: assume axial symmetry if possible (IAX suboption of EXPT)
- Theta and energy meshpoints have to be given manually.

Integration with OP,INTG

• Yield integration over energies: stopping power used to replace thickness with energy power used ... i for integration: thickness $\int_{0}^{L} Y dx = \int_{E \max}^{E \min} Y \frac{1}{\frac{dE}{dE}} dE$

 $d\mathbf{x}$

• One has to find projectile energy E_{min} at the end of the target to know the energy range for integration. ^{107}Ag ¹⁸⁸Hg

OP,INTG NE,NT,Emin,Emax,TH1_proj,TH2_proj E1,E2,E3,... ! energy meshpoints th1,th2,th3,... ! theta meshpoints NP ! number of stopping powers E1,E2,E3,... ! energy meshpoints dE/dx,.... ! stopping powers NI1,NI2 ! number of subdevisions of energy and scattering angle OP,CORR ! to correct experimental yields OP,EXIT

OP, INTG					
NE,NT,Emin,Emax,TH1_proj,TH2_proj					
E1,E2,E3,	! energy meshpoints				
$th1, th2, th3, \ldots$! theta meshpoints				
NP	! number of stopping powers				
E1,E2,E3,	! energy meshpoints				
dE/dx,	! stopping powers				
NI1,NI2	! number of subdevisions of energy and scattering angle				
OP, CORR	! to correct experimental yields				
OP,EXIT					

more useful...

simulation of the experiments **YIELD \Rightarrow COUNT RATE**

GOSIA yields

Fitting the matrix elements to the experimental data

$$\mathbf{Y_{exp}^{c}} = \mathbf{Y_{exp}} \cdot \frac{Y_{POINT}}{Y_{INT}}$$

$\mathbf{YIELD} \Rightarrow \mathbf{COUNT} \ \mathbf{RATE}$

- **GOSIA** is aware of gamma detectors set-up
- Gamma yield depends on detector angle (angular distribution)
- However, angular distributions are flattened by detection geometry (both for **particle** and **gamma**)
- Gamma detector geometry is calculated at the initial stage (geometry correction factors are calculated and stored for yield calculation)

$\mathbf{YIELD} \Rightarrow \mathbf{COUNT} \ \mathbf{RATE}$

• Taking into account the solid angle, Avogadro number, barns etc, beam current, total efficiency...

Count Rate = $\frac{7.6 \times 10^{-6} \times yield \times current[pps] \times eff}{A_{target}}$

Having the yields calculated...

How does GOSIA work? (1/3)

