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What we are about to do ?
● Few lectures:

1. Coulex – some basics concerning description of excitation 
and deexcitation process

2. What is the GOSIA code – how to start ?
3. What is the GOSIA gamma-ray yield?
4. Coulex experiments with stable and RIB beams  - the most 

important aspects.
5. Coulex as a tool to study shapes of atomic nuclei 

(Quadrupole Sum Rules method)



  

What we are about to do ?
● Hands-on sessions:

1. Starting with GOSIA – declaration of the investigated    
nucleus (LEVE) and inverse kinematics experiment (EXPT)

2. How to get the initial set of matrix elements ?
3. Description of the geometry of the experimental set-up –       

 MINIBALL Ge array + DSSD particle detector
4. Gamma-ray yields calculations.
5. Declaration of few experiments with different beam,     

 θscattering (normalization).

6. Minimization and error calculation.



  

Why Coulex ?
● Response of the nucleus to excitations => nuclear structure => 

macroscopic shape.
● Shape as a fundamental property of an atomic nucleus. 
● Coulex – the most powerful and direct experimental 

method to study nuclear collectivity and shapes.
● Excitation mechanism – purely electromagnetic. The only 

nuclear properties involved – matrix elements of the 
electromagnetic multipole moments.

● Nuclear structure studied in a model-independent way
● Bring information on Qs and relative signs of matrix elements – 

direct distinguish between prolate and oblate shape



  

Coulomb excitation – some basics

• Pure electromagnetic interaction if only the distance of closest approach Dmin is at least 
5 fm - nuclear part of the interaction can be neglected (Cline's criterion) 

b
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target

Target and projectile excitation possible
often heavy, magic nucleus (e.g. 208Pb)
 as projectile  target Coulomb excitation
 as target  projectile Coulomb excitation
(important technique for radioactive beams)

small impact parameter
 back scattering
 close approach
 strong EM field

large impact parameter
 forward scattering
 large distance
 weak EM field

Coulomb trajectories only if the colliding nuclei do not reach the “Coulomb barrier”  
purely electromagnetic process, no nuclear interaction, calculable with high precision

Dmin ≥ rs = [1.25 (A1
1/3 + A2

1/3) + 5] fm

• The excitation process depends on: Ebeam, Z of projectile and target nuclei, θscattering  

Zp,Ap

Zt,At



  

„Safe“ bombarding energy requirement
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is a consequence of the Dmin requirement

Preparing the experiment using the:
 
 choose adequate beam energy (D > Dmin for all θ) 
     low-energy Coulomb excitation
 limit scattering angle, i.e. select impact parameter b (Eb, θ) > Dmin

     high-energy Coulomb excitation



  

Electromagnetic interaction well-known → for a given set of matrix 
elements the Coulomb excitation cross section for any states of the 

investigated nucleus may be calculated

Straight-forward method: quantum mechanical treatment → expanding 
the total wave function into eigenstates of  the relative orbital angular →
high number of partial waves, quantal coupled channel equations...

Simplified and replaced by a semiclassical approach without any significant loss of accuracy 

IMPRACTICAL !!



  

Semiclassical picture of the Coulomb excitation 

● Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the 
time-dependent electromagnetic field from the projectile acting on the target nucleus 

● Assumption: trajectories can be described by the classical equations of motion,  
electromagnetic interaction is described using the quantum mechanic.

b

projectile

target

● Validity of semiclassical approach: 

1. λprojectile <<  Dmin  for a head on collision,

2. small energy transfer,

3. the excitation is induced only by the monopole-multipole interaction,

4. time seperation of the collision (10-19 – 10-20 s) and deexcitation (10-12 s) process.
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Ad 1. Validity of classical Coulomb trajectories

b=0

projectile target

λprojectile <<  D => Sommerfeld parameter η 

η >> 1 requirement for a semiclassical treatment 
of equations of motion → hyperbolic trajectories
 condition very good fulfilled in heavy ion 
induced Coulomb excitation
 equivalent to the number of exchanged 
photons needed to force 
the nuclei on a hyperbolic orbit 
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Semiclassical treatment is expected to deviate from the exact calculation by terms of the order ~ 1/η



  

Ad 2. Validity of semiclassical approach
small energy transfer

● Modification of the trajectory due to the energy transfer
● In the classical kinematics picture the point of the energy transfer is not 

known → accurate determination of energy transfer effects is not possible  
● To the 1st order the energy transfer effect can be described by the 

symmetrization of relevant excitation parameters – average of perturbed and 
unperturbed orbits parameters.

● Symmetrization procedure is adequate when Eexc << Ebeam

~ 1-3 MeV ~ 100 MeV



  

Coulomb excitation theory - the general approach

The excitation process can be described by the time-dependent H:
            H = HP + HT + V (r(t))

with HP/T being the free Hamiltonian of the projectile/target nucleus
and V(t) being the time-dependent electromagnetic interaction
(remark: often only target or projectile excitation are treated) 

Denoting the P/T wave function by ψ(t) the time-dependent Schrödinger equation:
iħ dψ(t)/dt = [HP + HT + V (r(t))] ψ(t)

During the collision, the wave function can be expressed as time-dependent 
expansion ψ(t) = ∑n an(t) φn  of the eigenstates φn of free HP/T  what leads to a set 
of coupled equations for the time-dependent excitation amplitudes an(t)

iħ dan(t)/dt = ∑m〈φn|V(t)| φm〉 exp[i/ħ (En-Em) t] am(t)

b
projectile r(t) target

can be written as an 
expansion of multipoles

m - all states involved in the 
excitation process 
→ nr. of coupled equations 

Energies of initial and final states



  

b
projectile

 The coupled equations for an(t) are usually solved by a multipole expansion 
of the electromagnetic interaction V(r(t)) 

     

 

 VP-T(r) = ZTZPe2/r monopole-monopole (Rutherford) term 
   + ∑λµ VP(Ελ,µ) electric multipole-monopole target excitation, 
   + ∑λµ VT(Ελ,µ) electric multipole-monopole project. excitation, 
   + ∑λµ VP(Μλ,µ) magnetic multipole project./target excitation   
   + ∑λµ VT(Μλ,µ) (but small at low v/c)
   + O(σλ,σ’λ’>0)		 higher order multipole-multipole terms (small) 

target

Coulomb excitation theory - the general approach



  

Coupled equations

In the heavy ion induced Coulomb excitation the interaction 
strength gives rise to multiple Coulomb excitation 

nuclear state can be populated indirectly, 
via several intermediate states

iħ dan(t)/dt = ∑m〈φn|V(t,Tλ,μ)| φm〉 exp[i/ħ (En-Em) t] am(t)

High number of coupled equations for the dan(t)/dt -> GOSIA code

The exact excitation pattern is not known
The excitation probability of a given excited state might
strongly dependent on many different matrix elements.

100Mo
Coulex, HIL, Warsaw, 2007



  

● For a given set of matrix elements (Tλ,µ) GOSIA solves differential coupled 
equations for the time-dependent excitation amplitudes an(t)

iħ dan(t)/dt = ∑m〈φn|∑λ,µV(t,Tλ,µ)| φm〉 exp[i/ħ (En-Em) t] am(t)

     to find level populations and gamma yields.

● The same set of Tλ,µ describes the deexcitation process
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Calculation includes effects influencing γ-ray intensities: internal conversion, size of Ge,
γ-ray angular distribution, deorientation

Deexcitation process



  

Summary

● Coulomb excitation is a purely electro-magnetic excitation 
process of nuclear states due to the Coulomb field of two 
colliding nuclei.

● The only nuclear properties involved – matrix elements.
● Coulomb excitation is a very precise tool to measure the 

collectivity of nuclear excitations  and in particular nuclear 
shapes.

● Pure electro-magnetic interaction (which can be readily 
calculated without the knowledge of optical potentials etc.) 
requires “safe” distance between the partners at all times.


