The Challenge of Establishing Triaxial Shapes in Nuclei

John L Wood School of Physics Georgia Institute of Technology

Fundamentals of Nuclear Models: Foundational Models
--David J. Rowe and JLW, World Scientific, 2010 [R&W]
+ second volume nearing completion

Nuclear Triaxiality:

Basic Assumptions

• Nuclear shape—ellipsoid, sharp surface (conserved volume)

$$\frac{x^2}{R_1^2} + \frac{y^2}{R_2^2} + \frac{z^2}{R_3^2} = 1$$

• Moments of inertia

$$\begin{aligned} \mathcal{J}_1^{\rm rig} &= \frac{1}{5} M(R_2^2 + R_3^2) \,, \qquad \text{etc.} \\ \mathcal{J}_1^{\rm irr} &= \frac{1}{5} M \frac{(R_2^2 - R_3^2)^2}{R_2^2 + R_3^2} \,, \qquad \text{etc.} \end{aligned}$$

• Bohr approximation for irrotational M. of I.

using

$$R(\theta,\varphi) = R_0 \left(1 + \sum_{\nu} \alpha_{2\nu} Y_{2\nu}^*(\theta,\varphi) + 0(\alpha^2) \right)$$

$$\bar{\alpha}_{20} = \beta \cos \gamma$$
, $\bar{\alpha}_{21} = \bar{\alpha}_{2,-1} = 0$, $\bar{\alpha}_{22} = \bar{\alpha}_{2,-2} = \frac{1}{\sqrt{2}} \beta \sin \gamma$

then

$$\mathcal{J}_{k}^{\text{Bohr}} = 4B\beta^{2}\sin^{2}(\gamma - k2\pi/3), \quad k = 1, 2, 3$$

where B is the mass parameter for quadrupole vibrations with irrotational flow. NOTE: ratios of components of M. of I. only depend on γ .

Nuclear Triaxiality The Bohr Collective Hamiltonian

Bohr collective Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2B}\nabla^2 + \hat{V}_{\pm}$$

 $V = V(\beta, \gamma)$, and

$$\nabla^2 = \frac{1}{\beta^4} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} - \frac{\hat{\Lambda}^2}{\beta^2}$$

where

$$\hat{\Lambda}^2 = -\frac{1}{\sin 3\gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} + \sum_{k=1}^3 \frac{\bar{L}_k^2}{4\sin^2(\gamma - 2\pi k/3)}$$

SERIOUS MISCONCEPTION: the denominator that appears in the location expected for a M. of I. comes from the *SO(5) symmetry of the Bohr Hamiltonian kinetic energy*. IT DOES NOT PROVE IRROTATIONAL FLOW; BUT, IRROTATIONAL FLOW IS SO(5) INVARIANT. See D.J. Rowe and J.L. Wood, "Fundamentals of Nuclear Models: Foundational Models",

World Scientific, 2010, Chapter 2, p. 106.

The term can be regarded as an SO(5) centrifugal term, cf. SO(3) and $p^2/2m \rightarrow p_r^2/2m + L^2/2mr^2$.

Nuclear Triaxiality peculiarity of the Bohr moments of inertia

At γ = 30⁰ the inertia tensor is axially symmetric BUT

the electric quadrupole tensor is not axially symmetric.

Experimental nuclear moments of inertia: do not reflect either rigid or irrotational flow

These values were obtained by fitting energies to an axially symmetric rotor model.

$$\mathcal{J}_k^{\mathrm{Bohr}}$$
 ~ β²

Rotor Model: axially symmetric variation of moments of inertia with spin

$$E_I = E_0 + \frac{\hbar^2}{2\Im}I(I+1)$$

BUT: superdeformed bands exhibit *zero* centrifugal stretching

Rotor Model:

No variation of intrinsic quadrupole moments with spin: even-mass nuclei, symmetric rotor model parameter fit

No evidence for centrifugal stretching

How do nuclei rotate?

 $B(E2; \alpha KI_i \rightarrow \alpha KI_f) =$

$$\frac{5}{16\pi} (I_i K, 20 | I_f K)^2 e^2 |\bar{Q}_0(\alpha K)|^2$$

$$Q(\alpha KI) = \frac{3K^2 - I(I+1)}{(I+1)(2I+3)} e\bar{Q}_0(\alpha K)$$

rotor model: K qu. no.

NEED MORE, BETTER DATA

Nuclear rotation: laboratory frame (violet) vs. body frame (yellow)

R&W Fig. 1.45

with independent electric quadrupole and inertia tensors

with independent electric quadrupole and inertia tensors

Hamiltonian:

 $\hat{H} = A_1 \hat{I}_1^2 + A_2 \hat{I}_2^2 + A_3 \hat{I}_3^2$ where $A_1 = 1/(2\mathcal{J}_1)$ and \mathcal{J}_1 = moment of inertia, etc.

E2 Quadrupole Operator:

$$\hat{T}(E2) = \cos \gamma \hat{T}_{0}^{(2)} + \frac{\sin \gamma}{\sqrt{2}} (\hat{T}_{+2}^{(2)} + \hat{T}_{-2}^{(2)})$$
where $\langle I_{f}K_{f} || \hat{T}_{\pm \nu}^{(2)} || I_{i}K_{i} \rangle = Q_{0}\sqrt{2I_{i} + 1} \langle I_{i}K_{i}; 2, \pm \nu |I_{f}K_{f} \rangle$

Reduced Transition Probability:

$$B(E2) = \frac{|\langle I_f K_f || \hat{T}(E2) || I_i K_i \rangle|^2}{2I_i + 1}$$

with independent electric quadrupole and inertia tensors

Hamiltonian: Shape dictated by A_1, A_2, A_3 $\hat{H} = A_1 \hat{I}_1^2 + A_2 \hat{I}_2^2 + A_3 \hat{I}_3^2 \longrightarrow \hat{H} = A \hat{I}^2 + F \hat{I}_3^2 + G(\hat{I}_+^2 + \hat{I}_-^2)$ where $\Diamond \langle IK | \hat{H} | IK \rangle \Diamond = A I(I+1) + FK^2$ and G produces "mixing" $A = A_1 + A_2$ $F = A_3 - A$

E2 Quadrupole Operator: Shape dictated by $\boldsymbol{\gamma}$

$$\hat{T}(E2) = \cos\gamma \hat{T}_0^{(2)} + \frac{\sin\gamma}{\sqrt{2}}(\hat{T}_{+2}^{(2)} + \hat{T}_{-2}^{(2)})$$

Standard procedure (e.g. Davydov)

$$\mathcal{J}_k^{\text{Bohr}} = 4B\beta^2 \sin^2(\gamma - k2\pi/3), \quad k = 1, 2, 3$$

with independent electric quadrupole and inertia tensors

• The spin-0 / spin-2 subspace $\langle IMK \pm 2 | H | IMK \rangle$

$$= G\sqrt{(I + K)(I \pm K + 1)(I + K - 1)(I \pm K + 2)}$$

$$H(2) = \begin{pmatrix} 6A & 4\sqrt{3}G \\ 4\sqrt{3}G & 6A + 4F \end{pmatrix},$$

which yields

$$E(2) = 6A + 2F \pm 2\sqrt{F^2 + 12G^2}.$$

These two equations cannot be solved because they have 3 unknowns.

Extension to the spin-0 / spin-2 / spin-4 subspace encounters deviations due to the spin-dependence of A and F: cannot usefully solve for G.

with independent electric quadrupole and inertia tensors

HOWEVER:

$$|2_1^+, M\rangle = \cos \Gamma |2, K = 0, M\rangle - \sin \Gamma |2, K = 2, M\rangle$$

$$|2_{2}^{+},M\rangle = \sin \Gamma |2,K=0,M\rangle + \cos \Gamma |2,K=2,M\rangle$$

where

$$|I,K=2,M\rangle = \frac{1}{\sqrt{2}}[|I,2,M\rangle + (-1)^{I}|I,-2,M\rangle]$$

and

$$\tan \Gamma = \frac{\sqrt{F^2 + 12G^2} - F}{2\sqrt{3}G}.$$

$$\hat{T}(E2) = \sqrt{\frac{5}{16\pi}} \left[\cos \gamma \, \hat{T}_0^{(2)} + \frac{\sin \gamma}{\sqrt{2}} \left(\hat{T}_{+2}^{(2)} + \hat{T}_{-2}^{(2)} \right) \right],$$

where the $\hat{T}_{\nu}^{(2)}$ reduce to

$$\langle I_f K_f \| \hat{T}_{\pm \nu}^{(2)} \| I_i K_i \rangle = Q_0 \sqrt{2I_i + 1} \langle I_i K_i; 2, \pm \nu | I_f K_f \rangle$$

UNKNOWNS: A, F, G or Γ, γ, Q_0

DATA:

E(2_1^+), E(2_2^+) and B₂₀ , B_{2'2} , B_{2'0} , Q₂ , Q_{2'}

7 equations in 5 unknowns

with independent electric quadrupole and inertia tensors

$$\begin{aligned} \langle 0_1 \| \hat{T}(E2) \| 2_1 \rangle &= \sqrt{\frac{5}{16\pi}} Q_0 \cos(\gamma + \Gamma), \\ \langle 0_1 \| \hat{T}(E2) \| 2_2 \rangle &= \sqrt{\frac{5}{16\pi}} Q_0 \sin(\gamma + \Gamma), \\ \langle 2_1 \| \hat{T}(E2) \| 2_2 \rangle &= \sqrt{\frac{25}{56\pi}} Q_0 \sin(\gamma - 2\Gamma), \\ \langle 2_1 \| \hat{T}(E2) \| 2_1 \rangle &= -\sqrt{\frac{25}{56\pi}} Q_0 \cos(\gamma - 2\Gamma) \\ &= -\langle 2_2 \| \hat{T}(E2) \| 2_2 \rangle, \end{aligned}$$

$$B(E2; I_i \to I_f) = \frac{\langle I_f \| \hat{T}(E2) \| I_i \rangle^2}{(2I_i + 1)},$$

and quadrupole moments,

$$Q(2_1^+) = -\frac{2}{7}Q_0\cos(\gamma - 2\Gamma) = -Q(2_2^+).$$

7 equations in 5 unknowns: A, F from $E(2_1^+)$, $E(2_2^+)$;

G or Γ, γ, Q_0 from E2 M.E.'s

with independent electric quadrupole and inertia tensors

 $G = \frac{F}{2\sqrt{3}}\tan(2\Gamma) = -3.82\,\text{keV}.$

NOTE: 4₃⁺ state appears (sub) vibrational

Nuclear moments of inertia fitted to a triaxial rotor model with independent components of the inertia tensor

k = 1 norm. to data

k = 2

k = 3 symm. axis @ $\gamma = 0^{\circ}$ and 60°

NOTE: relative values do not prove irrotational flow—they conform to the SO(5) invariant form of the inertia tensor.

NEED MORE DATA

with independent electric quadrupole and inertia tensors

• Some global perspectives:

$$\Gamma_{\rm irrot} = -\frac{1}{2}\cos^{-1}\left(\frac{\cos 4\gamma + 2\cos 2\gamma}{\sqrt{9 - 8\sin^2 3\gamma}}\right),\,$$

For $\gamma = 30^{\circ}$, $\Gamma_{irrot.} = -30^{\circ}$, whence from

$$\langle 0_1 \| \hat{T}(E2) \| 2_2 \rangle = \sqrt{\frac{5}{16\pi}} Q_0 \sin(\gamma + \Gamma), \qquad B(E2; 2_2^+ \rightarrow 0_1^+) = 0,$$

While these properties of the Davydov model at $\gamma = 30^{\circ}$ were well known; it was not known that they are due to a destructive interference effect between the electric quadrupole tensor and the inertia tensor.

with independent electric quadrupole and inertia tensors

A triaxial rotor model: case study--the Os isotopes

case study--the Os isotopes

<e2> eb</e2>	calc. (% dev.	from expt.)	-full diagonal	lization
--------------	---------------	-------------	----------------	----------

	18	⁸⁶ Os		¹⁸⁸ Os		¹⁹⁰ Os		¹⁹² Os
$2_1 - 0_1$	1.6697	' (-0.3%)	1.581	2 (-0.2%))	1.5190 (-0.7	1%)	1.4414 (-1.0%)
$4_1 - 2_1$	2.7170	0(-1.6%)	2.576	61 (-2.5%)		2.4853 (+5.0)%)	2.3628 (+11.7%)
$6_1 - 4_1$	3.512	(-9.7%)	3.33	8 (+0.8%)		3.2369 (+9.0)%)	3.1448 (+7.3%)
$8_1 - 6_1$	4.237	(-1.9%)	4.03	5 (+1.6%)		4.009 (+7.8	%)	3.840 (+7.3%)
$4_2 - 2_2$	1.7509	(-10.9%)	1.66	1 (-6.7%)		1.6115 (-13.	9%)	1.5580 (-4.8%)
$6_2 - 4_2$	2.865	(+3.0%)	2.66	8 (+8.5%)		2.224 (-14.5	5%)	2.172 (+3.9%)
$8_2 - 6_2$	3.550	(+8.9%)	3.303	8 (+29.5%))	3.105 (+19.4	%)	2.906 (+25.8%)
Mass	A (keV)	F (keV)	Q_0 (eb)	γ (deg)	Γ (deg)	G (keV)	J.M. / PR C 7	Allmond et al. 78 014302 (2008)
186	22.86	157.6	5.582	20.43	-2.40	-3.82	Data	from:
188	25.84	119.5	5.254	19.93	-2.98	-3.60	C.Y. \	Vu, D. Cline,
190	31.12	92.8	5.051	22.12	-5.94	-5.64	T. Cz	osnyka, et al.
192	34.30	70.8	4.814	25.19	-8.74	-6.44	NP A	607 178 (1996)

case study--the Os isotopes

<E2> eb calc. (% dev. from expt.)—full diagonalization Allmond et al.

	¹⁸⁶ Os	¹⁸⁸ Os	¹⁹⁰ Os	¹⁹² Os
$2_2 - 0_1$	0.5581 (+2.4%)	0.4958 (+2.6%)	0.4800 (+8.1%)	0.4771 (11.0%)
$2_2 - 2_1$	0 8668 (-3 4%)	0.8362 (-3.3%)	0.9888 (-7.2%)	1 1406 (-7 3)
$2_{2}^{2} - 4_{1}^{2}$	0.2949 (+29.9%)	0.3072(-18.7%)	0.401 (+111.0%)	0.455 (+30.0%)
$4_{2} - 2_{1}^{2}$	0.3471 (-17.2%)	0.2357(-16.7%)	0.0572 (-71.8%)	-0.0402 (-130.9\%)
$4_2 - 4_1$	1.2524 (+2.7%)	1.187 (+7.9%)	1.2849 (-10.5%)	1.309(-3.1%)
$4_2 - 6_1$	0.634 (-5.4%)	0.640 (+12.2%)	0.867 (+31.3%)	0.587(+46.8%)
$6_2 - 4_1$	0.1535 (-52.8%)	0.0141 (-88.9%)	-0.3927 (-301.4%)	-0.1797 (-360.4%)
$6_2 - 6_1$	1.406 (+2.6%)	1.276 (-12.6%)	1.123 (-36.2%)	1.105 (-25.9%)
$2_1 - 2_1$	-1.917 (-9.6%)	-1.795 (-3.8%)	-1.627 (-30.2%)	-1.411 (-16.7%)
$4_1 - 4_1$	-2.218(-9.8%)	-2.017 (-0.8%)	-1.576(-23.1%)	-1.104 (-51.3%)
$6_1 - 6_1$	-2.261(-35.40%)	-1.987 (-24.2%)	-1.170(-28.6%)	-0.822 (+29.2%)
$8_1 - 8_1$	-2.160 (+4.4%)	-1.874 (-35.8%)	-1.234 (-31.3%)	-0.719 (+45.1%)
$2_2 - 2_2$	1.917 (-9.6%)	1.795 (-14.5%)	1.627 (+6.3%)	1.4115 (+43.3%)
$4_2 - 4_2$	-1.179(-5.3%)	-1.136 (+6.9%)	-1.102 (+15.6%)	-0.826(+0.5%)
$6_2 - 6_2$	$-2.168(\oslash)$	-1.938 (-45.7%)	-0.818 (-2.2%)	-0.751(+44.4%)
$8_2 - 8_2$	-2.547 (⊘)	-2.181 (⊘)	-1.484 <mark>(-41.3%)</mark>	-0.999 (-9.7%)

NOTE: major deviations are for smallest M.E.'s (destructive interference)

case study--the Os isotopes

<E2> eb calc. (% dev. from expt.)—full diagonalization Allmond et al.

	¹⁸⁶ Os	¹⁸⁸ Os	¹⁹⁰ Os	¹⁹² Os
$4_3 - 2_1$	~0.000(-100.4%)	0.0058 (-95.2%)	0.0395 (-24.1%)	0.0916 (-20.4%)
$4_3 - 2_2$	0.7971 (-33.0%)	0.677 (-18.4)	0.554 (-28.1%)	0.4206 (-46.5%)
$4_3 - 3_1$	0.975 (-35.8%)	0.970 (-17.1%)	1.217 (-21.5%)	1.433 (-12.1%)
$4_3 - 4_2$	0.899 (-50.8%)	0.975 (-40.5%)	1.468 (-7.6%)	1.960 (+64.7%)
$4_3 - 4_3$	3.397 (+44.5%)	3.153 (+17.7%)	2.678 (+162.6%)	1.930 (+50.8)

R.D. Bagnell,... D.G. Burke PL **B66** 129 (1977)

....

D.G. Burke et al. PL **B78** 48 (1978)

E2 diagonal sum rules: spin 2

 \sim

 $\langle 2_1^+ || E2 || 2_1^+ \rangle + \langle 2_2^+ || E2 || 2_2^+ \rangle$ 4 ¹⁶⁶Er 3 ф ¹⁸⁴W ¹⁶⁸Er $\langle 2^{+}_{2}||E2||2^{+}_{2}\rangle$ (eb) ^{186,188}Os 2 ¹⁸²W ¹⁹⁰Os ¹¹⁴Cd ¹⁹²Os ⊢⊂ \cap ^{106,108,110}Pd Ge, Se 0 ¹⁹⁶Pt -1 194_D -2 -3 -2 -4 -1 0 2 $\langle \mathbf{2}_1^+ \| \mathbf{E} \mathbf{2} \| \mathbf{2}_1^+ \rangle$ (eb)

 $\{\langle 20; 20|20 \rangle + \langle 22; 20|22 \rangle\} = 0$

★ If K is a good quantum number

CONCLUSION: NO MISSING STRENGTH

$$Q(\alpha KI) = \frac{3K^2 - I(I+1)}{(I+1)(2I+3)}e\bar{Q}_0(\alpha K)$$

Sign change for I = 2:
K = 0 cf. K = 2

J.M. Allmond, PR C88 041307R (2013)

Nuclear rotation: (reminder) laboratory frame vs. body frame

R&W Fig. 1.45

E2 diagonal sum rules: spin 4

J.M. Allmond, PR C88 041307R (2013)

Hexadecapole collectivity: manifestation in K = 2 (gamma) bands a critical message from 50 years ago--forgotten

with independent electric quadrupole and inertia tensors

• Kumar-Cline sum rules

 $\langle q^2 \rangle \equiv \langle 0_1^+ \| \hat{Q} \| 2_1^+ \rangle \langle 2_1^+ \| \hat{Q} \| 0_1^+ \rangle + \langle 0_1^+ \| \hat{Q} \| 2_2^+ \rangle \langle 2_2^+ \| \hat{Q} \| 0_1^+ \rangle$

$$\langle q^3 \cos 3\delta \rangle \equiv \sum_{r,s=1,2} \langle 0_1^+ \| \hat{Q} \| 2_r^+ \rangle \langle 2_r^+ \| \hat{Q} \| 2_s^+ \rangle \langle 2_s^+ \| \hat{Q} \| 0_1^+ \rangle.$$

$$\begin{split} \langle q^3 \cos 3\delta \rangle &= Q_o^3 \cos^2(\gamma + \Gamma) \cos(\gamma - 2\Gamma) \\ &+ 2Q_o^3 \cos(\gamma + \Gamma) \sin(\gamma - 2\Gamma) \sin(\gamma + \Gamma) \\ &- Q_o^3 \sin^2(\gamma + \Gamma) \cos(\gamma - 2\Gamma) \\ &= Q_o^3 [\cos(\gamma - 2\Gamma) \cos(2\gamma + 2\Gamma) \\ &+ \sin(\gamma - 2\Gamma) \sin(2\gamma + 2\Gamma)] \\ &= Q_o^3 \cos[(\gamma - 2\Gamma) + (2\gamma + 2\Gamma)] \\ &= Q_o^3 \cos 3\gamma, \end{split}$$

D. Cline, Ann. Rev. Nucl. Part. Sci. **36** 683 (1986)

J.L. Wood et al. PR **C70** 024308 (2004)

with independent electric quadrupole and inertia tensors

• P_3 and P_4 interference terms:

 P_4

-1.5

-2

-10

-5

-15

Γ (deg)

 $P_3 = \langle 0_1 || \hat{T}(E2) || 2_1 \rangle \langle 2_1 || \hat{T}(E2) || 2_2 \rangle \langle 2_2 || \hat{T}(E2) || 0_1 \rangle,$ $P_4 = \langle 2_1 || \hat{T}(E2) || 2_1 \rangle P_3,$ $\frac{125}{7168\pi^2} Q_0^4 \left[\cos(4\gamma - 2\Gamma) - \cos 6\Gamma \right],$ $P_4 =$ 2 1.5 Lines: $\gamma = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}, 30^{\circ}$ E2 svmmetri 0.5 Plot: without scale factor 0 $\gamma = 30^{\circ}$ -0.5 All previous models: cannot give $P_4 > 0$. E2 triaxial -1

-25

-30

-20

J.M. Allmond et al. PR **C80** 021303**R** (2009)

with independent electric quadrupole and inertia tensors

• P_4 term in ¹⁹⁴Pt

M.E.	Exp. (e b)	Theory (e b)	% dev.		
$ \begin{array}{c} \langle 0_{1} \hat{T}(E2) 2_{1} \rangle \\ \langle 0_{1} \hat{T}(E2) 2_{2} \rangle \\ \langle 2_{1} \hat{T}(E2) 2_{2} \rangle \\ \langle 2_{1} \hat{T}(E2) 2_{1} \rangle \\ \langle 2_{2} \hat{T}(E2) 2_{2} \rangle \end{array} $	$\begin{array}{c} (-)1.281^9 \\ (+)0.091^2 \\ (-)1.53^5 \\ +0.61^6 \\ -0.66^{14} \end{array}$	$\begin{array}{c} (-)1.307^{31} \\ (+)0.0928^{48} \\ (-)1.449^{34} \\ +0.595^{16} \\ -0.595^{16} \end{array}$	-2.0% 2.0% 5.1% -3.1% 9.6%		
	Exp. (e b) ⁴	Theory (e b) ⁴	% dev.		
P_4^{a}	$+0.109^{11}$	$+0.105^{7}$	-4.3%		
^a The sign of the P ₄ term is independent of all phase-factor conventions for the E2 matrix					

elements (unlike the P_3 term).

Q₀ = - 4.155 eb, γ = 19.85°, Γ = -23.92°

J.M. Allmond et al. PR **C80** 021303**R** (2009)

Data from:

C.Y. Wu, D. Cline, T. Czosnyka, et al. NP **A607** 178 (1996); and see refs. In Allmond et al.

$P_4 < 0$ for:

Davydov model anharmonic vibrator model pairing-plus-quadrupole model

with independent electric quadrupole and inertia tensors

 Destructive interference of E2 matrix elements in a triaxial rotor model: ¹⁹⁶Pt

M.E.	Exp. (<i>e</i> b) [4]	Theory (eb)	diff. (eb)	% diff.
$\langle 0_1 \hat{T}(E2) 2_1 \rangle^{\mathrm{a}}$	(-)1.172(3)	(-)1.184(28)	-0.012	-1.0%
$\langle 0_1 \hat{T}(E2) 2_2 \rangle$	0.0	0.0	0.0	0.0%
$\langle 2_1 \hat{T}(E2) 2_2 \rangle^{\mathrm{a}}$	(-)1.36(5)	(-)1.243(51)	0.117	8.6%
$\langle 2_1 \hat{T}(E2) 2_1 \rangle$	+0.83(9)	+0.676(79)	-0.154	-18.6%
$\langle 2_2 \hat{T}(E2) 2_2 \rangle$	-0.51(21)	-0.676(79)	-0.166	-32.5%

^aBecause the signs of individual off-diagonal or transitional *E*2 matrix elements are not directly observable (unlike the diagonal *E*2 matrix elements), a negative sign, (–), is adopted here for $\langle 0_1 || \hat{T}(E2) || 2_1 \rangle$ and $\langle 2_1 || \hat{T}(E2) || 2_2 \rangle$ to comply with the $-\beta_2 \propto -Q_0$, $\gamma = 0^\circ - 30^\circ$ convention [3].

Q₀ = - 3.754 eb, γ = 20.5°, Γ = -20.5°

Exp.: NDS; C.S. Lim et al., NP A548 308 (1992)

NOTE: "O(6)" limit of the IBM gives: $<0_1 ||T(E2)||2_2 > = 0$ and $<2_1 ||T(E2)||2_1 > = 0$ J.M. Allmond et al., PR **C81** 051305**R** (2010)

Triaxiality?

CONCLUSIONS

- Need more data, e.g., A ~ 106 region, to answer questions about triaxiality.
- Coulex studies MUST be complemented by transfer reaction and inelastic scattering spectroscopy.
- As a Community, we are running a grave risk of "forgetting" critical (historical) data.

CONTENTIONS

- We need a much better perspective on nuclear "rotation" and what we mean by "moment of inertia".
- There is a serious lack of "standard" spectroscopy*: "fashion" is far too prevalent (and cannot answer fundamental open questions).

*And lack of facilities to conduct these critical experiments.