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Nuclear	Triaxiality:	
Basic	Assump@ons	

	•  Nuclear	shape—ellipsoid,	sharp	surface	(conserved	volume)	
	

•  Moments	of	iner@a	

	
	
•  Bohr	approxima@on	for	irrota@onal	M.	of	I.	
							using	
	
	
	
										then	
	
		
											
										where	B	is	the	mass	parameter	for	quadrupole	vibra@ons	with	irrota@onal	flow.			
										NOTE:	ra%os	of	components	of	M.	of	I.	only	depend	on	γ.		

MOMENTS OF INERTIA IN THE LIQUID DROP MODEL

Liquid drop model expressions for the moments of inertia, for both rigid and irro-
tational flow, have been given by Bohr and Mottelsona. In the liquid drop model,
the nucleus is assumed to have a constant density within a sharply defined surface.
If the surface is assumed to have an ellipsoidal shape characterized by the equation
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A widely used approximation for the irrotational flow moments of inertia of the

liquid drop model, is the expression of Bohr??

J Bohr
k = 4Bβ2 sin2(γ − k2π/3) , k = 1, 2, 3., (6.364)

where B is the mass parameter for quadrupole vibrations. The parameters (β, γ) in
Bohr’s expression are defined in terms of the multipole expansion

R(θ,ϕ) = R0

(

1 +
∑

ν

α2νY
∗
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)

(6.365)

of the nuclear surface radius by setting

ᾱ20 = β cos γ , ᾱ21 = ᾱ2,−1 = 0 , ᾱ22 = ᾱ2,−2 =
1√
2
β sin γ (6.366)

in the intrinsic frame. When the irrotational-flow value for the vibrational mass
parameter B is inserted into eq. (6.364), one obtains the expression
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This expression is the same as that given by eq. (6.363) to leading order in the
differences R2

i −R2
j .

aA. Bohr and B.R. Mottelson, Nuclear Structure, Vol. II, (Benjamin, Reading, 1975).
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Nuclear	Triaxiality	
The	Bohr	Collec@ve	Hamiltonian	

Bohr	collec@ve	Hamiltonian	

							
V	=	V(β,γ),	and	
	
	
									
	where	
	
	
	
	
SERIOUS	MISCONCEPTION:	the	denominator	that	appears	in	the	loca@on	expected	for	a	M.	of	I.	
comes	from	the	SO(5)	symmetry	of	the	Bohr	Hamiltonian	kine%c	energy.	
IT	DOES	NOT	PROVE	IRROTATIONAL	FLOW;	BUT,	IRROTATIONAL	FLOW	IS	SO(5)	INVARIANT.	
	See	D.J.	Rowe	and	J.L.	Wood,	“Fundamentals	of	Nuclear	Models:	Founda@onal	Models”,		
			World		Scien@fic,	2010,	Chapter	2,	p.	106.	
	The	term	can	be	regarded	as	an	SO(5)	centrifugal	term,	cf.	SO(3)	and		p2/2m	à	pr2/2m	+	L2	/	2mr2.		
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Chapter 2

The Bohr collective model

From the survey of nuclear data presented in Chapter 1, a picture emerges of nu-
clei made up of many nucleons which, to a first approximation, sometimes behave
independently (near doubly-closed shells), sometimes interact strongly to form cor-
related two-nucleon pairs (notably in singly-closed shell nuclei), and at other times
behave collectively in a fluid-like manner to generate vibrational and rotational
states of the whole nucleus. These perspectives are overly simplistic. Nevertheless,
together they provide the foundational models for a qualitative, and often quanti-
tative, understanding of most nuclear structure data. Moreover, they provide the
language used by nuclear physicists. The current chapter outlines the collective
model of the nucleus as introduced by Aage Bohr.1

The Bohr collective model was introduced as a hydrodynamic collective model
based on an earlier liquid drop model.2,3 However, it turns out that many of the
liquid drop model concepts, such as a sharply-defined surface, are overly restrictive
and unnecessary. This aspect of the model is therefore avoided in the presentation
given here. In this chapter, we also restrict consideration to the quadrupole degrees
of freedom. The configuration space of the model is then a real five-dimensional
vector space, R5, whose elements are are interpreted as quadrupole tensors for a
nucleus and a model Hamiltonian is naturally expressed in the form

Ĥ = ° ~2

2B
r2 + V̂ , (2.1)

wherer2 is the Laplacian and V̂ is a rotationally-invariant potential energy function
of the R5 coordinates; B is a mass parameter.

In looking ahead to understanding how the Bohr model fits into an overall
microscopically-based theory of nuclear structure, it is worth noting that, already
in Bohr’s original paper and in an earlier paper by Rainwater,4 a mechanism was
identified for combining independent-particle and collective degrees of freedom in a

1Bohr A. (1952), Mat. Fys. Medd. Dan. Vid. Selsk. 26 (14).
2Bohr, op. cit. Footnote 19 on Page 48.
3Bohr and Kalckar, op. cit. Footnote 20 on Page 48.
4Rainwater, op. cit. Footnote 17 on Page 47.
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2.2 The volume element and Laplacian

2.4 Show that the infinitesimal generator, æ̂ = °i @/@∞, of a gamma rotation can be
expressed as

æ̂ =
Ø
~
X

m

h
° sin ∞ D2

0m(≠) +
1p
2
cos ∞

°
D2

2m(≠) + D2
°2m(≠)

¢ i
º̂m. (2.27)

2.5 The angular momentum operators, {L̂m}, are components of an L = 1 tensor
and therefore proportional to

£
q̂ ≠ º̂

§
1m

=
X

m
1

m
2

(2m1 2m2|1m) q̂m
2

º̂m
1

, (2.28)

where (2m1 2m2|1m) is a Clebsch-Gordan coupling coe±cient. Use the identity

[L̂0, q̂m] = mq̂m (2.29)

to infer that the correctly normalised expression is given by

L̂k = °
p
10

i
~
£
q̂ ≠ º̂

§
1k
. (2.30)

2.6 Let G denote a group of transformations of a variable x. Let {T̂ (g); g 2 G} denote
a corresponding group of transformations of a set of functions of x defined by

™g(x) := T̂ (g)™(x) = ™(g°1x), g 2 G. (2.31)

Show that

T̂ (g1)T̂ (g2)™(x) = ™(g°1
2 g°1

1 x) = ™((g1g2)
°1x) = T̂ (g1g2)√(x). (2.32)

(This example exhibits the importance of paying attention to the order of the
operations in the expression T̂ (g1)T̂ (g2)™(x) to avoid making the mistake of sup-
posing that T̂ (g1)T̂ (g2)™(x) = ™(g°1

1 g°1
2 x).)

2.2 The volume element and Laplacian

Expressions for the volume element and Laplacian are needed for construction of
the collective model Hilbert space and to determine the action of the model kinetic
energy on its wave functions. An assumption of the Bohr model (see Section 4.8)
is that its configuration space, R5, has the geometry of a Euclidean space. In
terms of Cartesian coordinates, {xi}, for R5, the volume element is assumed to be
dv = d5x ¥

Q

i dxi and the Laplacian is assumed to be r2 =
P

i @
2/@x2

i . In terms
of (curvilinear) spherical polar coordinates, the volume element is then

dv = Ø4dØ sin 3∞ d∞ d≠, (2.33)

where d≠ is the SO(3) volume element, Equation (A.107), and the Laplacian is

r2 =
1

Ø4

@

@Ø
Ø4 @

@Ø
° §̂2

Ø2
, (2.34)
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2 The Bohr collective model

where §̂2, the SO(5) Casimir invariant, is expressed in terms of intrinsic SO(3)
angular momenta {L̄k} by

§̂2 = ° 1

sin 3∞

@

@∞
sin 3∞

@

@∞
+

3
X

k=1

L̄2
k

4 sin2(∞ ° 2ºk/3)
. (2.35)

The remainder of this section, which the reader may choose to bypass, gives a
detailed derivation13 of these expressions by use of the metric tensor.

2.2.1 The metric tensor

The geometrical properties of an arbitrary Riemannian manifold are characterised
by a metric tensor from which distances along paths, volume elements, curvature,
and other geometric properties can be determined. In particular, an element of
length ds2 on a Riemannian manifold is defined in terms of a set of local coordinates,
{ªæ}, by the expression

ds2 =
X

æø

gæø dª
ædªø , (2.36)

where gæø is a component of the metric tensor.
When the manifold of interest is a Euclidean space or a submanifold of a Eu-

clidean space, as are the collective model space, R5, and its four-sphere submanifold,
S4, there are many simplifications because the underlying Euclidean space is flat.
An element of length is then defined in terms of Cartesian coordinates, {xi}, by

ds2 :=
X

i

dx2
i . (2.37)

Thus, the metric tensor at any point of a Euclidean space has components, relative
to a system of Cartesian coordinates, given by gij = ±ij . However, an element of
length in a Euclidean space can also be expressed relative to arbitrary curvilinear
coordinates, {ªæ}, in the general form of Equation (2.36), with components of the
metric tensor given by

gæø =
X

i

@xi

@ªæ
@xi

@ªø
. (2.38)

Moreover, because

X

i

@xi

@ªæ
@ªø

@xi
= ±æ,ø , (2.39)

the inverse, ḡ, of the metric tensor has matrix elements

ḡæø =
X

i

@ªæ

@xi

@ªø

@xi
. (2.40)

13The original derivation was outlined by Bohr, op. cit. Footnote 1 on Page 97.

106



Nuclear	Triaxiality	
peculiarity	of	the	Bohr	moments	of	iner@a	

February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

2.3 Solvable submodels of the Bohr collective model

with moments of inertia

=k = 4BØ2
0 sin

2(∞0 ° 2ºk/3). (2.112)

These moments of inertia are shown in Figure 2.4.
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Figure 2.4: Moments of inertia, in units of 4BØ2
0 , as functions

of ∞0 in the rotor limit of the Bohr collective model. Note that
=2 = =3 when ∞0 = º/6 (cf. Equation (2.114) ) for any value of
Ø0. (Based on a figure of Meyer-ter-Vehn J. (1975), Nucl. Phys.
A249, 111.)

It is important to note that, although the mass parameter, B, was assigned the
irrotational-flow value that it would have for a quantum fluid, in Bohr’s original
formulation of his model,18 an assumption of irrotational flow is not an essential
component of the model and is not made in the current treatment. Thus, B can be
treated as a parameter and its value adjusted so that Equation (2.100) fits observed
E2 transition rates for vibrational nuclei. In applications of the model to deformed
nuclei, its value might be adjusted so that Equation (2.112) reproduces, as far
as possible, observed moments of inertia. It turns out that the values obtained
experimentally in such fits are far from irrotational-flow values which suggests that
nuclear collective flows are not irrotational, i.e., they involve vorticity degrees of
freedom This possibility will be discussed in Volume 2. Note also that the ∞-
dependence of the moments of inertia of the Bohr model is determined by the
expansion of the SO(5) Casimir invariant, Equation (2.35), and is not adjustable
without a generalisation of the model. In particular, the ratios of the moments of
inertia as functions of ∞, arise from the SO(5) structure of the Bohr model and do
not depend on any liquid-drop model assumptions.19

18Bohr, op. cit. Footnote 1 on Page 97.
19A recent analysis by Wood J.L. et al. (1992), Phys. Repts. 215, 101 suggests that in real

nuclei, the ratios of the moments of inertia also deviate considerably from those of an SO(5)
model.
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At	γ	=	300	the	iner@a	tensor	is		
axially	symmetric	
	BUT	
	the	electric	quadrupole	tensor	is	
not	axially	symmetric.		
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Experimental	nuclear	moments	of	iner@a:	
	do	not	reflect	either	rigid	or	irrota@onal	flow	

These	values	were	obtained	by	
fijng	energies	to	an	axially		
symmetric	rotor	model.	
	
																		~		β2	

MOMENTS OF INERTIA IN THE LIQUID DROP MODEL

Liquid drop model expressions for the moments of inertia, for both rigid and irro-
tational flow, have been given by Bohr and Mottelsona. In the liquid drop model,
the nucleus is assumed to have a constant density within a sharply defined surface.
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ᾱ20 = β cos γ , ᾱ21 = ᾱ2,−1 = 0 , ᾱ22 = ᾱ2,−2 =
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in the intrinsic frame. When the irrotational-flow value for the vibrational mass
parameter B is inserted into eq. (6.364), one obtains the expression
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This expression is the same as that given by eq. (6.363) to leading order in the
differences R2

i −R2
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aA. Bohr and B.R. Mottelson, Nuclear Structure, Vol. II, (Benjamin, Reading, 1975).
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Rotor	Model:	axially	symmetric	
varia3on	of	moments	of	iner3a	with	spin	

Centrifugal  
stretching? 

R&W	Fig.	1.60	
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1 Elements of nuclear structure

Evidence for excited superdeformed bands is emerging in mass regions other than
the actinides and not necessarily in regions with large ground-state deformation.
Evidence for a superdeformed band in 152

66 Dy86 is shown in Figure 1.81 (see also
Figure 1.83). The extreme constancy of the moment of inertia for this band, as

Figure 1.81: Evidence for a
superdeformed band in 152Dy.
The gamma rays shown, which
are seen in the reac-
tions 76Ge(80Se, 4n)152Dy and
108Pd(48Ca, 4n)152Dy, are all
in coincidence with each other.
The spins of the decaying levels
in the cascade are shown. Note
the extraordinary constancy of
the spacings of the ∞-ray ener-
gies (see text). (The figure is
similar to one shown in Laurit-
sen T. et al. (2002), Phys. Rev.
Lett. 88, 042501 and was made
available to us by T. Lauritsen.)
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reflected by a constant value of ¢EI,I°2/(4I°2) (cf. Equation (1.49)), and constant
¢2EI,I°2 (i.e., diÆerences in ¢EI,I°2) suggests a very rigid nuclear deformation (cf.
Figure 1.60).

The full range of shapes and deformations that can be exhibited by nuclei has
yet to be explored both experimentally and theoretically. The key to experimental
exploration is the ability to identify the cascades of signature gamma-ray lines (cf.
Figure 1.81) against a background of hundreds of other gamma-ray transitions (cf.
Figure 1.83). This ability has been developed to an extraordinary level of sophis-
tication by the use of large arrays of gamma-ray detectors. The key to theoretical
exploration is likely to be the ability to predict the energies at which shell model
states of diÆerent deformation are expected to lie. A step in this direction is a
calculation of the energy levels using a simple U(3) model34 which gives the results
for 16O shown in Figure 1.82.

Exercises

1.37 From information in Figure 1.80, calculate RZ/R? for the ground-state band and
the superdeformed band.

1.38 Calculate =rigid from Q for the superdeformed band in Figure 1.80 and compare
with ~2/2=.

34Rowe D.J., Thiamova G. and Wood J.L. (2006), Phys. Rev. Lett. 97, 202501.
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BUT:	superdeformed	bands	exhibit		
zero	centrifugal	stretching	

R&W	Fig.	1.81	



Rotor	Model:	
No	varia3on	of	intrinsic	quadrupole	moments	with	spin:	
even-mass	nuclei,	symmetric	rotor	model	parameter	fit	

No evidence for  
centrifugal stretching 

How do nuclei rotate? 

R&W	Fig.	1.61	

rotor	model:	K	qu.	no.	

NEED	MORE,	BETTER	DATA	



Nuclear	rota@on:		
laboratory	frame	(violet)	vs.	body	frame	(yellow)	

  Prolate rotor:   (a)  K = J           (b)  K = 0 R&W	Fig.	1.45	



Rotor Basis: Near Symmetric Rotor

*Because nucleus has a plane of reflection symmetry

Basis—axially	symmetric	rotor:	 J.L.	Wood	et	al.	
PR	C70	024308	(2004)	

A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	



A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	

General Rotor

Hamiltonian:

= moment of inertiawhere and

E2 Quadrupole Operator:

where

Reduced Transition Probability:

,	etc.	



A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	General Rotor (Mixing, G=Not Small)

Hamiltonian: Shape dictated by A1, A2, A3

E2 Quadrupole Operator: Shape dictated by γ

where and G produces “mixing”

A1(γ), A2(γ), A3(γ)         A(γ), F(γ), G(γ)   

Standard procedure (e.g. Davydov)

by coupling the E2 tensor to the inertia tensor through

either rigid or irrotational flow

A = A1 + A2 F = A3 - A 

A1,	A2,	A3	are	determined	by	γ	through																											,	etc.	
	

MOMENTS OF INERTIA IN THE LIQUID DROP MODEL

Liquid drop model expressions for the moments of inertia, for both rigid and irro-
tational flow, have been given by Bohr and Mottelsona. In the liquid drop model,
the nucleus is assumed to have a constant density within a sharply defined surface.
If the surface is assumed to have an ellipsoidal shape characterized by the equation

x2

R2
1

+
y2

R2
2

+
z2

R2
3

= 1 , (6.361)

then the moments of inertia for rigid and irrotational flow are, respectively,

J rig
1 =

1

5
M(R2

2 +R2
3) , etc., (6.362)

J irr
1 =

1

5
M

(R2
2 −R2

3)
2

R2
2 +R2

2

, etc. (6.363)

A widely used approximation for the irrotational flow moments of inertia of the

liquid drop model, is the expression of Bohr??

J Bohr
k = 4Bβ2 sin2(γ − k2π/3) , k = 1, 2, 3., (6.364)

where B is the mass parameter for quadrupole vibrations. The parameters (β, γ) in
Bohr’s expression are defined in terms of the multipole expansion

R(θ,ϕ) = R0

(

1 +
∑

ν

α2νY
∗
2ν(θ,ϕ) + 0(α2)

)

(6.365)

of the nuclear surface radius by setting

ᾱ20 = β cos γ , ᾱ21 = ᾱ2,−1 = 0 , ᾱ22 = ᾱ2,−2 =
1√
2
β sin γ (6.366)

in the intrinsic frame. When the irrotational-flow value for the vibrational mass
parameter B is inserted into eq. (6.364), one obtains the expression

J Bohr
1 =

3M

10

(R2
2 − R2

3)
2

R2
1 +R2

2 +R2
3

, etc. (6.367)

This expression is the same as that given by eq. (6.363) to leading order in the
differences R2

i −R2
j .

aA. Bohr and B.R. Mottelson, Nuclear Structure, Vol. II, (Benjamin, Reading, 1975).
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General Rotor

Hamiltonian:

= moment of inertiawhere and

E2 Quadrupole Operator:

where

Reduced Transition Probability:



A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	

•  The	spin-0	/	spin-2	subspace	

Triaxial I=0,2 and Parameter Space

“interference” “interference”
NEW!!! NEW!!!

New paramterization reveals a destructive intereference effect between E2 and inertia  

Triaxial rotor model for nuclei with independent inertia and electric quadrupole tensors

J. L. Wood, A-M. Oros-Peusquens,* R. Zaballa,† J. M. Allmond, and W. D. Kulp
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

(Received 28 May 2004; published 23 August 2004)

The triaxial rotor model for nuclei is investigated by relaxing the use of irrotational moments of inertia. The
dependence of observables of the model on the electric quadrupole tensor, through a triaxiality angle !!", and
on the inertia tensor, through a mixing angle, is illustrated. This formalism provides insights into the physics
of triaxial rotations in nuclei.

DOI: 10.1103/PhysRevC.70.024308 PACS number(s): 21.60.Ev

The triaxial rotor model is one of the longest standing and
simplest descriptions of nuclear collectivity. It was intro-
duced by Davydov and Filippov [1] following the seminal
paper on nuclear rotations and vibrations by A. Bohr [2]. In
the years immediately following its inception, the triaxial
rotor description of nuclear collectivity in doubly even nuclei
was extensively developed (see, e.g., Davydov [3]). The
model continues to receive attention as a basis for correlating
low-energy collectivity in doubly even nuclei [4–7]. [Also,
currently, triaxiality is being incorporated into a variety of
models aimed at describing high-spin degrees of freedom in
odd-mass nuclei under names that include wobbling, tilted-
axis cranking, and chiral bands (see, e.g., [8]).]
The application of the triaxial rotor model to low-energy

collectivity in doubly even nuclei has adhered to the assump-
tion of irrotational flow moments of inertia throughout its
history. In the present paper we fit the moments of inertia to
experimental data. This achieves a number of improvements
over the use of irrotational flow moments of inertia. First, it
removes systematic deviations between the model (with
Jirrot) and experimental data on electric quadrupole proper-
ties. Second, it provides insight into interference effects, be-
tween state mixing, which are dependent on the inertia ten-
sor, and intrinsic electric quadrupole properties, which are
dependent on the electric quadrupole tensor. Third, it reveals
that the ratios of the components of the inertia tensor are not
given by irrotational flow. Fourth, it yields closed-form ex-
pressions for the electric quadrupole properties of the 21

+ and
22
+ states in doubly even nuclei, which provide a simple
means for extracting the model parameters, and which are
directly connected to “Kumar-Cline” sum rules [9].
The Hamiltonian for the model is

H = A1Î1
2 + A2Î2

2 + A3Î3
2, !1"

where the parameters, A1 ,A2 ,A3, are related to the compo-
nents of the inertia tensor J1 ,J2 ,J3 by A1=1/ !2J1", etc.,
J1"J2"J3, and Î1 , Î2 , Î3 are the operators representing the
body-fixed frame components of the total collective angular
momentum. The Hamiltonian can be rewritten in the form

H = AÎ2 + FÎ3
2 + G!Î+

2 + Î−
2" , !2"

where

A =
1
2

!A1 + A2", F = A3 − A, G =
1
4

!A1 − A2" , !3"

and

Î± = Î1 ± iÎ2. !4"

The first two terms in Eq. (2) are diagonal in the basis
#IMK$, yielding !#=1"

%IMK#H#IMK$ = AI!I + 1" + FK2. !5"

The third term in Eq. (2) yields the off-diagonal matrix ele-
ments

%IMK ± 2#H#IMK$

= G&!I $ K"!I ± K + 1"!I $ K − 1"!I ± K + 2" , !6"

where, recall 'Î1 , Î2(=−iÎ3, and cyclic permutations, i.e., for
body-fixed components of Î. (The quantum number M in the
basis #IMK$ is the laboratory-frame directional component of
I.)
The model, applied to doubly even nuclei, has an I=0

ground state, which is assigned energy E!0"=0. It has no I
=1 states. It has two I=2 states with energies given by

H!2" = ) 6A 4&3G
4&3G 6A + 4F * , !7"

which yields

E!2" = 6A + 2F ± 2&F2 + 12G2. !8"

There is one I=3 state with energy

E!3" = 12A + 4F . !9"

There are three I=4 states with energies given by

H!4" = + 20A 12&5G 0
12&5G 20A + 4F 4&7G
0 4&7G 20A + 16F

, . !10"

The model states with I%4 are I=5 (two), I=6 (four),….
They can be organized into bands with K=0, I
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The triaxial rotor model for nuclei is investigated by relaxing the use of irrotational moments of inertia. The
dependence of observables of the model on the electric quadrupole tensor, through a triaxiality angle !!", and
on the inertia tensor, through a mixing angle, is illustrated. This formalism provides insights into the physics
of triaxial rotations in nuclei.

DOI: 10.1103/PhysRevC.70.024308 PACS number(s): 21.60.Ev

The triaxial rotor model is one of the longest standing and
simplest descriptions of nuclear collectivity. It was intro-
duced by Davydov and Filippov [1] following the seminal
paper on nuclear rotations and vibrations by A. Bohr [2]. In
the years immediately following its inception, the triaxial
rotor description of nuclear collectivity in doubly even nuclei
was extensively developed (see, e.g., Davydov [3]). The
model continues to receive attention as a basis for correlating
low-energy collectivity in doubly even nuclei [4–7]. [Also,
currently, triaxiality is being incorporated into a variety of
models aimed at describing high-spin degrees of freedom in
odd-mass nuclei under names that include wobbling, tilted-
axis cranking, and chiral bands (see, e.g., [8]).]
The application of the triaxial rotor model to low-energy

collectivity in doubly even nuclei has adhered to the assump-
tion of irrotational flow moments of inertia throughout its
history. In the present paper we fit the moments of inertia to
experimental data. This achieves a number of improvements
over the use of irrotational flow moments of inertia. First, it
removes systematic deviations between the model (with
Jirrot) and experimental data on electric quadrupole proper-
ties. Second, it provides insight into interference effects, be-
tween state mixing, which are dependent on the inertia ten-
sor, and intrinsic electric quadrupole properties, which are
dependent on the electric quadrupole tensor. Third, it reveals
that the ratios of the components of the inertia tensor are not
given by irrotational flow. Fourth, it yields closed-form ex-
pressions for the electric quadrupole properties of the 21

+ and
22
+ states in doubly even nuclei, which provide a simple
means for extracting the model parameters, and which are
directly connected to “Kumar-Cline” sum rules [9].
The Hamiltonian for the model is

H = A1Î1
2 + A2Î2

2 + A3Î3
2, !1"

where the parameters, A1 ,A2 ,A3, are related to the compo-
nents of the inertia tensor J1 ,J2 ,J3 by A1=1/ !2J1", etc.,
J1"J2"J3, and Î1 , Î2 , Î3 are the operators representing the
body-fixed frame components of the total collective angular
momentum. The Hamiltonian can be rewritten in the form

H = AÎ2 + FÎ3
2 + G!Î+

2 + Î−
2" , !2"

where

A =
1
2

!A1 + A2", F = A3 − A, G =
1
4

!A1 − A2" , !3"

and

Î± = Î1 ± iÎ2. !4"

The first two terms in Eq. (2) are diagonal in the basis
#IMK$, yielding !#=1"

%IMK#H#IMK$ = AI!I + 1" + FK2. !5"

The third term in Eq. (2) yields the off-diagonal matrix ele-
ments

%IMK ± 2#H#IMK$

= G&!I $ K"!I ± K + 1"!I $ K − 1"!I ± K + 2" , !6"

where, recall 'Î1 , Î2(=−iÎ3, and cyclic permutations, i.e., for
body-fixed components of Î. (The quantum number M in the
basis #IMK$ is the laboratory-frame directional component of
I.)
The model, applied to doubly even nuclei, has an I=0

ground state, which is assigned energy E!0"=0. It has no I
=1 states. It has two I=2 states with energies given by

H!2" = ) 6A 4&3G
4&3G 6A + 4F * , !7"

which yields

E!2" = 6A + 2F ± 2&F2 + 12G2. !8"

There is one I=3 state with energy

E!3" = 12A + 4F . !9"

There are three I=4 states with energies given by

H!4" = + 20A 12&5G 0
12&5G 20A + 4F 4&7G
0 4&7G 20A + 16F

, . !10"

The model states with I%4 are I=5 (two), I=6 (four),….
They can be organized into bands with K=0, I
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mix	

These	two	equa@ons	cannot	be	solved	because	they	have	3	unknowns.	
	
Extension	to	the	spin-0	/	spin-2	/	spin-4	subspace	encounters	devia@ons	due	to	
	the	spin-dependence	of	A	and	F:	cannot	usefully	solve	for	G.	



Triaxial I=0,2 and Parameter Space

“interference” “interference”
NEW!!! NEW!!!

New paramterization reveals a destructive intereference effect between E2 and inertia  

=0,2 ,4 ,6 , . . ....; K=2, I=2,3 ,4 ,5 ,6 , . . .; K=4, I
=4,5 ,6 , . . .; K=6, I=6, . . .; etc. The eigenvectors of H!2"
can be expressed as

#21
+,M$ = cos !#2,K = 0,M$ − sin !#2,K = 2,M$ ,

#22
+,M$ = sin !#2,K = 0,M$ + cos !#2,K = 2,M$ , !11"

where

#I,K = 2,M$ =
1
%2 &#I,2,M$ + !− 1"I#I,− 2,M$' !12"

and

tan ! =
%F2 + 12G2 − F

2%3G . !13"

(We drop the M quantum number from here on.)
The electric quadrupole operator in the model is

T̂!E2" = T̂!2" =% 5
16"

e(T̂o!2"cos # +
1
%2 &T̂+2

!2" + T̂−2
!2"'sin #) ,

!14"

where the $K=0 component of T̂!2" and the $K= ±2 com-
ponents of T̂!2" are identifiable by their subscripts. The func-
tions of # have their origin in the standard parametrization of
the quadrupole shape tensor with the intrinsic frame aligned
with the principal axes

R!%,&" = Ro*1 ++
',(

)'(
* Y'(!%,&", , !15"

)20 = * cos #, )21 = )2−1 = 0,

)22 = )2−2 =
*
%2sin # . !16"

For the 21
+ and 22

+ states in the model we then have

-01#T̂!2"#21$ =
Qo

%16"
cos!# + !" , !17"

-01#T̂!2"#22$ =
Qo

%16"
sin!# + !" , !18"

-21#T̂!2"#22$ =% 5
56"

Qosin!# − 2!" , !19"

-21#T̂!2"#21$ = −% 5
56"

Qocos!# − 2!" , !20"

and

-22#T̂!2"#22$ =% 5
56"

Qocos!# − 2!" , !21"

where

Qo = -.T̂!2".$ , !22"

i.e., the reduced matrix element resulting from the use of the
Wigner-Eckart theorem. Furthermore,

B!E2;21
+ → 01

+" =
Qo
2

16"
cos2!# + !" , !23"

B!E2;22
+ → 01

+" =
Qo
2

16"
sin2!# + !" , !24"

B!E2;22
+ → 21

+" =
5Qo

2

56"
sin2!# − 2!" , !25"

Q!21
+" = −

2
7
Qocos!# − 2!" = − Q!22

+" . !26"

The present results can be connected directly to results
obtained using irrotational flow moments of inertia,

Jk = 4B*2sin2/# − k
2"

3 0, k = 1,2,3, !27"

where B is the irrotational flow mass parameter. Thus,

F =
3

8B*2sin2 3#
!cos 4# + 2 cos 2#" , !28"

G =
%3

16B*2 sin2 3#
!sin 4# − 2 sin 2#" , !29"

followed by

! = −
1
2
cos−1/ cos 4# + 2 cos 2#

%9 − 8 sin2 3#
0 . !30"

This leads to the standard relations [1,3]

E!2+
+" =

9 + !− 1"+%81 − 72 sin2 3#

4B*2 sin2 3#
, + = 1,2, !31"

B!E2;2+
+ → 01

+" =
Qo
2

16"*12 − !− 1"+1
2
3 − 2 sin2 3#

%9 − 8 sin2 3#
, ,

!32"

B!E2;22
+ → 21

+" =
5Qo

2

56"

sin2 3#

!9 − 8 sin2 3#"
, !33"

Q!21
+" = −

2
7
Qo

3 cos 3#

%9 − 8 sin2 3#
= − Q!22

+" . !34"

Equations (31) and (32) can be used to obtain the ratios

E!22
+"

E!21
+"
=
3 + %9 − 8 sin2 3#

3 − %9 − 8 sin2 3#
, !35"
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Triaxial rotor model description of E2 properties in 186,188,190,192Os

J. M. Allmond,* R. Zaballa,† A. M. Oros-Peusquens,‡ W. D. Kulp, and J. L. Wood
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

(Received 4 May 2008; published 2 July 2008)

The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the description
of the extensive set of E2 matrix elements available for 186,188,190,192Os. Most large and medium transition E2
matrix elements can be reproduced to within ∼10%, and most diagonal elements to within ∼30%. Most small
transition matrix elements can be reproduced to within ∼30%, and they support the interference effect exhibited
by the model between the inertia and E2 tensors: this is a new feature of quantum rotor models. The diagonal E2
matrix elements at higher spins in the K = 2 band are extremely sensitive to admixtures of higher K values: the
low experimental values in 190,192Os indicate significant admixtures of K = 4 components. Attention is given to
the Kπ = 4+ bands in these nuclei and the controversial issue of whether they are of quadrupole or hexadecapole
nature.

DOI: 10.1103/PhysRevC.78.014302 PACS number(s): 21.60.Ev

Triaxial rotor models of nuclei have played a leading role
in the description of nuclear collectivity ever since their
introduction by Davydov in 1958 [1–3]. Triaxial rotations
and triaxial shapes are currently at the forefront of modeling
phenomenology in odd-mass nuclei and strongly deformed
bands (see, e.g., Ref. [4]). However, applications of triaxial
rotor models to doubly-even nuclei at low spin has been sparse
in the past 20 years [5–8]. With the successes of triaxial
descriptions in odd-mass nuclei, it is appropriate to carry out a
critical evaluation of such descriptions in doubly even nuclei.
In the present work, we do this for the osmium isotopes.

Recently, we introduced [9] a triaxial rotor model with
independent inertia and E2 tensors. This model overcomes a
number of unphysical features [9] possessed by the triaxial
rotor model with irrotational moments of inertia, which
previously had been the universal choice for the triaxial rotor
model. In our initial study [9], we only addressed global
features of the model; in the present work, we address the
ability of the model to describe detailed E2 properties.

The isotopes 186−192Os constitute a leading challenge to
collective models and serve as a best test of models with an
axial asymmetry degree of freedom. This is because of their
transitional behavior with very low-lying Kπ = 2+ bands (the
2+

2 state in 192Os is the lowest known 2+
2 state in any doubly

even nucleus) and because there is an extensive set of E2
matrix elements available from a multi-Coulomb excitation
study [10].

The isotopes 190,192Os also possess a very puzzling feature
in their low-lying Kπ = 4+ bands which exhibit spectro-
scopic signatures consistent with multiphonon quadrupole
character [10,11], proton two-quasiparticle character [12],
and hexadecapole character [13]. This has been the basis of

*Current address: Department of Physics, University of Richmond,
VA 23173, USA.

†Current address: Department of Physics and Astronomy, Georgia
State University, Atlanta, GA 30303, USA.

‡Current address: Institute of Medicine, MR Group, Research
Centre Juelich, D-52425 Juelich, Germany.

recent controversy [14–17]. Indeed, this complex character of
low-lying Kπ = 4+ bands may be widely occurring [18]. The
triaxial rotor possesses a collective Kπ = 4+ band, and so
we investigate the collective E2 properties of these bands in
186−192Os as triaxial rotor model states.

The triaxial rotor model [9] possesses three energy param-
eters A,F , and G (G < 0), viz.,

Ĥ = AÎ 2 + F Î 2
3 + G(Î 2

+ + Î 2
−), h̄ = 1; (1)

and for I = 2,

H (2) =
(

6A 4
√

3G

4
√

3G 6A + 4F

)
, (2)

H (4) =

⎛

⎝
20A 12

√
5G 0

12
√

5G 20A + 4F 4
√

7G

0 4
√

7G 20A + 16F

⎞

⎠ . (3)

The eigenvectors of H (2) can be expressed as

|2+
1 ,M⟩ = cos "|2,K = 0,M⟩ − sin "|2,K = 2,M⟩,

(4)
|2+

2 ,M⟩ = sin "|2,K = 0,M⟩ + cos "|2,K = 2,M⟩,

where

|I,K = 2,M⟩ = 1√
2

[|I, 2,M⟩ + (−1)I |I,−2,M⟩], (5)

and

tan 2" = 2
√

3
G

F
(6)

(note, " < 0 because G < 0). (We drop the M quantum
number from here on.)

Further, the model [9] possesses two parameters, Q0 and
γ , describing the E2 properties (in units of eb)

T̂ (E2) =
√

5
16π

[
cos γ T̂

(2)
0 + sin γ√

2

(
T̂

(2)
+2 + T̂

(2)
−2

)]
, (7)

where the T̂ (2)
ν reduce to

⟨If Kf ∥T̂ (2)
±ν ∥IiKi⟩ = Q0

√
2Ii + 1⟨IiKi ; 2,±ν|If Kf ⟩. (8)
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HOWEVER:	
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 2. Energy levels for 186−192Os showing the lowest K = 0, 2, and 4 bands. The data are from the Nuclear Data Sheets [19–22].

values of ⟨21∥T̂ (E2)∥21⟩ = −1.75+22
−13 eb and ⟨22∥T̂ (E2)

∥22⟩ = 2.12+6
−22 eb. Table II shows the choices for the param-

eters for all four Os isotopes under study.
We note that there are other E2 data available for the os-

mium isotopes. The recent lifetime measurements in 188,190Os
(up to spin 8+ in the ground band, up to spin 6+ in the γ
band, and for the 4+ state of the Kπ = 4+ band) by Wu
et al. [11] yield B(E2) values that agree with B(E2) values
calculated using the E2 matrix elements in Table I. Coulomb
excitation studies carried out prior to the work of Wu et al. [10]
are more limited in scope and generally less precise and so
were not considered for the present study. A muonic x-ray

study by Hoehn et al. [23] reports values for B(E2; 0+
1 → 2+

1 )
and Q(2+

1 ) for 186−192Os. The B(E2) values show fair to
good consistency with the corresponding E2 matrix elements.
The Q(2+

1 ) values show only moderate consistency with the
corresponding E2 matrix elements. Details are given later.

Equation (3) and the values of F and G in Table I
immediately suggest a useful approximation in applying the
model: for properties of the K = 0 and K = 2 bands, the
influence of higher K bands appears likely to be negligible,
because 4

√
7|G| ≪ [E(K = 4) − E(K = 2)] = 12F . Thus,

we first study a two-state mixing description within the triaxial
rotor model, for which

H (I ) =
(

AI (I + 1) G
√

2(I − 1)I (I + 1)(I + 2)
G

√
2(I − 1)I (I + 1)(I + 2) AI (I + 1) + 4F

)
, (23)

I = 2, 4, 6, 8, . . . (the I = 3, 5, 7, . . . states in the K = 2 band
will be unmixed). The resulting mixing angles for the even-spin
states are given by

tan(2#I ) =
√

(I − 1)I (I + 1)(I + 2)
24

tan(2#). (24)

TABLE II. Parameter values for 186−192Os. Note that G depends
on #, cf. Eq. (6).

Mass A (keV) F (keV) Q0 (eb) γ (deg) # (deg) G (keV)

186 22.86 157.6 5.582 20.43 −2.40 −3.82
188 25.84 119.5 5.254 19.93 −2.98 −3.60
190 31.12 92.8 5.051 22.12 −5.94 −5.64
192 34.30 70.8 4.814 25.19 −8.74 −6.44

Following reduction using the Wigner-Eckart theorem, the E2
matrix elements involving I > 2 do not have the simple forms
manifested in Eqs. (9)–(12), except

⟨21∥T̂ (E2)∥31⟩ =
√

25
32π

Q0 sin(γ + #), (25)

⟨22∥T̂ (E2)∥31⟩ = −
√

25
32π

Q0 cos(γ + #), (26)

⟨31∥T̂ (E2)∥31⟩ = 0, (27)

and for I odd

⟨If ∥T̂ (E2)∥Ii⟩ = Q0

√
5

16π

√
2Ii + 1 cos γ ⟨Ii2; 20|If 2⟩,

(28)

014302-3
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental

014302-2

= sin-1 (2.653 x 0.897 / 5.582)  =  28.04°  

-   2.67° 
			22.71° 

NOTE:	43+	state	appears	(sub)	vibra@onal	
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Fig. 2. The experimental (black) and irrotational (red) moments of inertia relative 
to the leading-order rigid-body value as a function of β2 sin2(γ − 2πk/3) for the 
1-axis (a), 2-axis (b), and 3-axis (c), respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

axes. However, the degree to which the 3-axis does deviate from 
the others, cf. the 172Yb outlier at γ = 4.9◦ in Fig. 3(c), may in-
dicate a partial coupling to the intrinsic motion, expected for a 
γ vibration. Alternatively, the 172Yb outlier may be the result of 
configuration mixing due to a relatively low-lying 0+

2 band head; 
note that 2+

γ = 2+
3 .

The relative moments of inertia as a function of axial asym-
metry, γ , are shown in Fig. 4 for all three axes. The relative irro-
tational values are shown for comparison. Note the normalization 
of the scale to J1. The relative moments of inertia are qualitatively 
consistent with irrotational flow (cf. clarification in the conclusion). 
It is also clear J1 > J2 ∼ J3 is manifested in nuclei that approach 
the triaxial limit of the electric quadrupole tensor, γ = 30◦; this is 
a feature of the Bohr Hamiltonian that was pointed out by Meyer-
ter-Vehn [36] in 1975 and it is now shown for the first time to be 
exhibited qualitatively by nuclei. Recent Coulomb excitation results 
of 110Ru [26] establish it as the best candidate for triaxiality near 
the ground state to date. Additional Coulomb-excitation results for 
the neutron-rich Mo–Ru region with higher precision would be 
valuable. The outliers, 172Yb and 156Gd, correspond to cases with 
low-lying excited 0+ states (with K π = 0+, 2+ bands).

Fig. 3. The experimental moments of inertia relative to the irrotational flow value 
as a function of γ for the 1-axis (a), 2-axis (b), and 3-axis (c), respectively.

Fig. 4. The relative moments of inertia for all three axes as a function of axial asym-
metry, γ . The experimental values (circles) have been normalized to the irrotational 
values (lines) through the 1-axis.

The empirical 2+ mixing parameter, $, as a function of axial 
asymmetry, γ , is shown in Fig. 5(a). The rigid and irrotational val-
ues are shown for comparison. The experimental mixing strength 
reveals qualitative agreement with the irrotational flow expecta-
tion; this is due to the fact that the mixing is only dependent on 
the relative moments of inertia, which eliminates the explicit ir-

J.M.	Allmond	and	JLW		
Phys.	Les.	B767	226	(2017)	
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the variances are known, e.g., the Os isotopes [12], lack precision 
but suggest that nuclei are neither rigid nor soft but somewhere 
in between.

We explore the implications of assuming β- and γ -rigid de-
formation (i.e., an axially asymmetric top) on the extracted mo-
ments of inertia. This is accomplished by using a recently formu-
lated version of the triaxial rotor model with independent electric 
quadrupole and inertia tensors [13]; this is the simplest possible 
non-trivial view that allows a unique analytical solution to the 
three moments of inertia within the spin-2 subspace. While there 
have been investigations into the moments of inertia of axially 
asymmetric nuclei before, e.g., Refs. [14–18], empirical values for 
all three axes, to our knowledge, have never been reported.

In this Letter, empirical moments of inertia, J1, J2, J3, of 12 
atomic nuclei with E(4+

1 )/E(2+
1 ) > 2.7 are extracted from exper-

imental 2+
g,γ energies and electric quadrupole matrix elements, 

and the results are compared to expectations based on rigid and 
irrotational inertial flow. The E2 matrix elements used in this 
study are from multiple-step Coulomb excitation data [12,19–26], 
most of which are from the past two decades. Only by having 
the signs of the E2 matrix elements, i.e., ⟨2+

g ||M̂(E2)||2+
g ⟩ and 

⟨0+
g ||M̂(E2)||2+

g ⟩⟨2+
g ||M̂(E2)||2+

γ ⟩⟨2+
γ ||M̂(E2)||0+

g ⟩, can a unique so-
lution to all three components of the inertia tensor be obtained.

The Hamiltonian for rotations about three axes (i.e., an asym-
metric top) is

H = A1 Î2
1 + A2 Î2

2 + A3 Î2
3, (1)

where the parameters A1, A2, A3 are related to the components 
of the inertia tensor by A1 = h̄2/(2J1), A2 = h̄2/(2J2), A3 =
h̄2/(2J3) and Î1, ̂I2, ̂I3 are the angular momentum operators in 
the body-fixed frame with a |I K ⟩ basis. The Hamiltonian can be 
rewritten as

H = A Î2 + F Î2
3 + G( Î2

+ + Î2
−), (2)

where

A = 1
2
(A1 + A2), F = A3 − A, G = 1

4
(A1 − A2), (3)

and

Î± = Î1 ± i Î2. (4)

When applied to doubly-even nuclei, there is an Iπ = 0+ ground 
state with E(0+) = 0, no Iπ = 1+ state, and two mixed Iπ = 2+

states (K π = 0+, 2+) with energies given by

H(2+) =
(

6A 4
√

3G
4
√

3G 6A + 4F

)
, (5)

which yields

E(2+) = 6A + 2F ± 2
√

F 2 + 12G2. (6)

The mixing angle is related to G and F by

tan 2$ = 2
√

3
G
F

(7)

(note, $ < 0 because G < 0) and the resulting E2 matrix elements 
for the Iπ = 0+, 2+ subspace are

⟨0+
g ||M̂(E2)||2+

g ⟩ =
√

5
16π

Q 0 cos(γ + $), (8)

⟨0+
g ||M̂(E2)||2+

γ ⟩ =
√

5
16π

Q 0 sin(γ + $), (9)

⟨2+
g ||M̂(E2)||2+

γ ⟩ =
√

25
56π

Q 0 sin(γ − 2$), (10)

and

⟨2+
g ||M̂(E2)||2+

g ⟩ = −
√

25
56π

Q 0 cos(γ − 2$)

= −⟨2+
γ ||M̂(E2)||2+

γ ⟩. (11)

The E2 matrix elements are described by three parameters, Q ◦
(axial deformation), γ (axial asymmetry), and $ (mixing angle). 
Further details can be found in Refs. [13,25,27–29]. While the 2+

mixing angle, $, can be inferred from the excitation energies of 
higher spins, such an approach is not particularly sensitive and, 
more importantly, it does not lead to a unique empirical value.

Once the Q ◦ , γ , and $ deformation and mixing parameters are 
determined from the experimental E2 matrix elements, the A, F , 
and G parameters of the Hamiltonian can be extracted exactly us-
ing the experimental 2+ energies, viz.

F =
E(2+

γ ) − E(2+
g )

4
√

1 + tan2(2$)
, (12)

A =
E(2+

g ) + E(2+
γ ) − 4F

12
, (13)

G = F

2
√

3
tan 2$, (14)

where the empirical moments of inertia are

J1 = 1
2

h̄2

A + 2G
, (15)

J2 = 1
2

h̄2

A − 2G
, (16)

J3 = 1
2

h̄2

A + F
. (17)

It is important to stress that the signs of the E2 matrix ele-
ments are required to obtain a unique solution to all three com-
ponents of the inertia tensor. In particular, ⟨2+

g ||M̂(E2)||2+
g ⟩ de-

termines whether the electric quadrupole moment is prolate or 
oblate, and ⟨0+

g ||M̂(E2)||2+
g ⟩⟨2+

g ||M̂(E2)||2+
γ ⟩⟨2+

γ ||M̂(E2)||0+
g ⟩ de-

termines whether γ > |$| or γ < |$|.
The present results can be connected directly to results ob-

tained using rigid and irrotational flow moments of inertia by

Jrigid, k = Brigid

[

1 −
√

5
4π

β cos
(
γ − k

2π

3

)]

(18)

and

Jirrot., k = 4Birrot.β
2 sin2

(
γ − k

2π

3

)
, (19)

where k = 1, 2, 3, Brigid = 2
5 M R2 = 0.0138 × A5/3 (h̄2/MeV), 

Birrot. = 3
8π M R2 = 0.00412 × A5/3 (h̄2/MeV), β = Q ◦

√
5π/(3Z R2), 

and R = 1.2A1/3 (fm). It is important to highlight the fact that the 
irrotational-flow component of the moment of inertia in Eq. (19)
resides in the mass parameter, Birrot. . The β2 sin2

(
γ − k 2π

3

)
de-

pendence is not explicitly limited to irrotational flow but results 
from the SO(5) invariance of the Bohr Hamiltonian (which hap-
pens to be fulfilled by irrotational flow), cf. page 121 of Ref. [10].

The mixing strength can be determined from the moments of 
inertia by

$ = 1
2

tan−1

(
√

3
J2 − J1

2J1J2
J3

− J2 − J1

)

, (20)

k =	1	norm.	to	data	
	
k =	2	
	
k =	3	symm.	axis		
			@	γ = 0° and 60° 
 
NOTE:	rela@ve	values	
do	not	prove	irrota@onal	
flow—they	conform	to		
the	SO(5)	invariant	form		
of	the	iner@a	tensor.		
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by 60◦ − γ and −60◦ − ". The two choices for describing
oblate nuclei are equivalent except for the ordering of the axes
which is experimentally indistinguishable. Because the E2
properties of prolate and oblate nuclei are symmetric about
γ = 30◦ (except for the sign of the quadrupole moments)
[21], we confine the use of γ to the 0◦–30◦ range and use
+|Q0| ∝ +|β2| for prolate nuclei and −|Q0| ∝ −|β2| for
oblate nuclei.

From Eqs. (3)–(6), one directly obtains

P4 = 125
7168π2

Q4
0 [cos(4γ − 2") − cos 6"] , (8)

which is zero when γ = |"|, negative when γ > |"|, and
positive when γ < |"| for the 0◦ ! γ ! 30◦ region. Because
P4 ∝ Q4

0 ∝ β4
2 , the sign of P4 is phase independent and,

therefore, strictly determined by the relative amount of E2
and inertial asymmetry, γ and ", respectively. In fact, the
sign of P4 can be determined from Fig. 1(a) alone [i.e., it
is the ⟨01||T̂ (E2)||22⟩ ∝ sin(γ + ") matrix element that is
responsible for the change in sign]. The P4 term is depicted
in Fig. 2 and the phase conventions for the present model are
given in Table I. For irrotational flow,

"irrot = −1
2

cos−1

(
cos 4γ + 2 cos 2γ
√

9 − 8 sin2 3γ

)

, (9)

one obtains that P4 is always <0, as noted above.
The nuclei 192,194Pt are examples where P4 > 0 is observed

[6,8,10]. To our knowledge these are the only examples for
which an anomalous P4 > 0 is certain. Other possibilities
for P4 > 0 include 196Pt [22] and 66Zn [23], but because
⟨01||T̂ (E2)||22⟩ ∼ 0, the experimental errors make the sign
ambiguous. There has also been a recent study of 74,76Kr,
where P4 > 0 with respect to both 22 and 23. However, the
K assignments appear ambiguous because of strong mixing
of K = 0, 2 and of prolate/oblate shapes; shape mixing is
outside of the present description and 22 states that are K = 0
provide P4 > 0 naturally [3]. While this is the limit of our

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 -5 -10 -15 -20 -25 -30
Γ (deg)

P4

E2 symmetric
γ = 0  

γ = 30
E2 triaxial

o

o

FIG. 2. The P4 term, without the scale factor of (125/7168π2)Q4
0,

is shown as a function of " for different values (0◦, 5◦, 10◦, 15◦, 20◦,
25◦, 30◦) of triaxiality, γ . P4 = 0 at γ = |"|. Both prolate and oblate
nuclei are described in this 0◦ ! γ ! 30◦ region; see text for details.

TABLE I. The P3 and P4 sign convention for the region 0◦ !
γ ! 30◦, where oblate E2 shapes are generated in this region by use
of a negative β (i.e., −β2 ∝ −Q0, which preserves the three-axis as
the basis, |IK⟩).

P3 (Triaxial sign convention—no iλ = −1 phase)

γ > |"| γ < |"|

+Q0 (prolate) + −
−Q0 (oblate) − +

P4 (Triaxial sign convention—phase independent)

γ > |"| γ < |"|

+Q0 (prolate) − +
−Q0 (oblate) − +

knowledge on known examples of P4 > 0, future experiments
should especially pay attention to the possibility of P4 > 0
for the Hg isotopes, other Pt isotopes, and neutron-rich Os
isotopes.

The present investigation focuses on explaining the P4 > 0
anomaly for 194Pt, where the 22 state is spectroscopically
known to be K = 2. It has been studied by many groups
using multi-Coulex [6,10,13,19,24–30]. Multi-Coulex studies
provide the key quantity, ⟨21||T̂ (E2)||21⟩, in P4 and they
contribute to the values of ⟨01||T̂ (E2)||21⟩, ⟨21||T̂ (E2)||22⟩,
and ⟨01||T̂ (E2)||22⟩. The value used here for ⟨01||T̂ (E2)||21⟩
is computed from the evaluation of B(E2; 01 → 21) by Raman
et al. [31], which gives ⟨01||T̂ (E2)||21⟩ = 1.2819

8 e b. The mea-
surements contributing to ⟨21||T̂ (E2)||22⟩ and ⟨01||T̂ (E2)||22⟩
are given in Table II and are from γ -ray yields following
multi-Coulex [24–26,28], magnetic analysis of multi-Coulex
scattered ions [27,29], and lifetime measurements using fast
electronic timing [32]. The matrix elements ⟨21||T̂ (E2)||21⟩
and ⟨22||T̂ (E2)||22⟩ are also given in Table II and depend
entirely on multi-Coulex measurements [13,24,25,29,30].

The model parameters Q0, γ , and " can be determined for
194Pt as follows. Using the triaxial parameter space outlined
in Fig. 1 and the linearly weighted experimental E2 matrix
elements in Table II, the model parameters Q0 and γ + " can
be determined from Fig. 1(a) by

Q
′

0 = − 1
0.3154

√
(−1.281)2 + (+0.091)2

= −4.07228 e b, (10)

(γ + ")
′ = arctan

(+0.091
−1.281

)

= −4.0610 deg. (11)

The model parameters Q0 and γ − 2" can be determined from
Fig. 1(b) by

Q
′′

0 = − 1
0.3770

√
(−0.61)2 + (−1.53)2

= − 4.3714 e b, (12)
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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B(E2;	22+	à	01+)		=		0,	

Q(21+)		=		0,	

Q(22+)		=		0.	

While	these	proper@es	of	the	Davydov	model	at	γ	=	30°	were	well	known;	
it	was	not	known	that	they	are	due	to	a	destruc@ve	interference	effect	between		
the	electric	quadrupole	tensor	and	the	iner@a	tensor.		
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Fig. 5. (a) The experimental (black), irrotational (red), and rigid (blue) 2+ mixing 
parameter, !, as a function of axial asymmetry, γ . (b) The ratio of the experimental 
and irrotational 2+ mixing values. (c) The experimental (black) versus irrotational 
(red) sin(γ + !) values, which are proportional to ⟨0g ||M̂(E2)||2γ ⟩. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

rotational dependence Birrot. in Eq. (19). This explains the limited 
success (cf. Ref. [13]) of the Davydov–Filippov rotor model [30]. It 
is important to stress that, while there are some qualitative agree-
ments in the relative moments of inertia with a β2 sin2(γ −2πk/3)

dependence, the quantitative moments of inertia on a case-by-case 
basis show significant deviations. Fig. 5(b) reveals the extent of the 
scatter of the 2+ mixing values with respect to the “irrotational” 
values. These deviations can have a large impact on the calculated 
E2 matrix elements when approaching γ = 30◦ due to destruc-
tive interference [29], cf. Fig. 5(c), which reveals the discrepancy 
between the fitted and irrotational ⟨0g ||M̂(E2)||2γ ⟩ ∝ sin(γ + !)

values. A β2 sin2(γ − 2πk/3) dependence of the moments of iner-
tia is not sufficient in quantitative calculations [13].

We recognize that actual nuclei are believed to possess fluctu-
ations in the β and γ shape parameters about average values. In 
some of the nuclei reported (chosen based on the availability of 
Coulex data, a clear γ -band candidate, and E(4+

1 )/E(2+
1 ) > 2.7), 

the present approach will be limited. This is particularly true for 
150Nd, 156Gd, and 172Yb which have low-lying 0+

2 states. How-

ever, the variance in the shape parameters, which could equally 
result from configuration mixing, remains largely unknown exper-
imentally and the present approach takes the simplest possible 
non-trivial view in extracting moments of inertia. We believe this 
will provide guidance to exploring, especially, γ -soft nuclei using 
a model such as the ACM [34], which will involve more param-
eters with concomitant difficulty in finding global minima in the 
fitting. However, it’s important to recognize that within the ACM, 
low-lying β- and γ -vibrational bands result in unrealistically large 
mixing effects [10,34]; this fact in combination with the regular-
ity of the 3 moments of inertia leaves one to conclude that the 
low-lying states are a composite of both triaxial and vibrational de-
grees of freedom with the former being the most likely dominant 
component. More precise Coulomb-excitation data, e.g., variances 
of quadrupole shape invariants, are needed to test this hypothe-
sis.

A better description of inertial flow will require improving both 
the absolute and relative values. The absolute values are deter-
mined by the mass parameter B , cf. Eqs. (18) and (19); Brigid
is too large and Birrot is too small. It is interesting to note that 
the relative moment of inertia values are qualitatively described 
by β2 sin2(γ − 2πk/3), cf. Fig. 2, which is a result of the SO(5) 
invariance [10,34] of the Bohr model [37,38]; irrotational flow is 
SO(5) invariant, but SO(5) invariance does not necessarily imply 
irrotational flow. Rowe et al. [34] have pointed out that a better de-
scription of inertial flow might be given within a collective model 
by the inclusion of vorticity degrees of freedom as done in su-
perfluid hydrodynamics [39]. The symplectic model, Sp(3, R) [40], 
provides a promising step in this direction: it possesses vorticity 
degrees of freedom in one of its submodels and, moreover, it is a 
submodel of the shell model. It is also interesting to note that tri-
axial deformation naturally emerges within the symplectic model 
with low-lying collectivity being the result of mixing several triax-
ial rotor-like configurations [33].

While there have been significant advances in microscopic cal-
culations [41–45], which include pairing interaction effects as sug-
gested by Bohr, Mottelson, and Pines [46], the theoretical moments 
of inertia have been limited to one-dimensional comparisons with-
out definitive evidence of axial symmetry. Furthermore, micro-
scopic theories of deformed nuclei are often limited to ground-
state calculations of the β and γ shape parameters, relying on a 
collective model to generate the excited states. A better under-
standing of inertial flow directly impacts the manner in which 
collectivity should be generated from predicted shape parameters. 
It is our hope that the new empirical moments of inertia for the 
1-, 2-, and 3-axis of atomic nuclei further stimulate multiple-step 
Coulomb excitation experiments and algebraic and microscopic 
theory in the quest to better understand the nature of inertial flow 
in finite many-body quantum systems composed of strongly inter-
acting fermions.
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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FIG. 2. Energy levels for 186−192Os showing the lowest K = 0, 2, and 4 bands. The data are from the Nuclear Data Sheets [19–22].

values of ⟨21∥T̂ (E2)∥21⟩ = −1.75+22
−13 eb and ⟨22∥T̂ (E2)

∥22⟩ = 2.12+6
−22 eb. Table II shows the choices for the param-

eters for all four Os isotopes under study.
We note that there are other E2 data available for the os-

mium isotopes. The recent lifetime measurements in 188,190Os
(up to spin 8+ in the ground band, up to spin 6+ in the γ
band, and for the 4+ state of the Kπ = 4+ band) by Wu
et al. [11] yield B(E2) values that agree with B(E2) values
calculated using the E2 matrix elements in Table I. Coulomb
excitation studies carried out prior to the work of Wu et al. [10]
are more limited in scope and generally less precise and so
were not considered for the present study. A muonic x-ray

study by Hoehn et al. [23] reports values for B(E2; 0+
1 → 2+

1 )
and Q(2+

1 ) for 186−192Os. The B(E2) values show fair to
good consistency with the corresponding E2 matrix elements.
The Q(2+

1 ) values show only moderate consistency with the
corresponding E2 matrix elements. Details are given later.

Equation (3) and the values of F and G in Table I
immediately suggest a useful approximation in applying the
model: for properties of the K = 0 and K = 2 bands, the
influence of higher K bands appears likely to be negligible,
because 4

√
7|G| ≪ [E(K = 4) − E(K = 2)] = 12F . Thus,

we first study a two-state mixing description within the triaxial
rotor model, for which

H (I ) =
(

AI (I + 1) G
√

2(I − 1)I (I + 1)(I + 2)
G

√
2(I − 1)I (I + 1)(I + 2) AI (I + 1) + 4F

)
, (23)

I = 2, 4, 6, 8, . . . (the I = 3, 5, 7, . . . states in the K = 2 band
will be unmixed). The resulting mixing angles for the even-spin
states are given by

tan(2#I ) =
√

(I − 1)I (I + 1)(I + 2)
24

tan(2#). (24)

TABLE II. Parameter values for 186−192Os. Note that G depends
on #, cf. Eq. (6).

Mass A (keV) F (keV) Q0 (eb) γ (deg) # (deg) G (keV)

186 22.86 157.6 5.582 20.43 −2.40 −3.82
188 25.84 119.5 5.254 19.93 −2.98 −3.60
190 31.12 92.8 5.051 22.12 −5.94 −5.64
192 34.30 70.8 4.814 25.19 −8.74 −6.44

Following reduction using the Wigner-Eckart theorem, the E2
matrix elements involving I > 2 do not have the simple forms
manifested in Eqs. (9)–(12), except

⟨21∥T̂ (E2)∥31⟩ =
√

25
32π

Q0 sin(γ + #), (25)

⟨22∥T̂ (E2)∥31⟩ = −
√

25
32π

Q0 cos(γ + #), (26)

⟨31∥T̂ (E2)∥31⟩ = 0, (27)

and for I odd

⟨If ∥T̂ (E2)∥Ii⟩ = Q0

√
5

16π

√
2Ii + 1 cos γ ⟨Ii2; 20|If 2⟩,

(28)
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FIG. 2. Energy levels for 186−192Os showing the lowest K = 0, 2, and 4 bands. The data are from the Nuclear Data Sheets [19–22].

values of ⟨21∥T̂ (E2)∥21⟩ = −1.75+22
−13 eb and ⟨22∥T̂ (E2)

∥22⟩ = 2.12+6
−22 eb. Table II shows the choices for the param-

eters for all four Os isotopes under study.
We note that there are other E2 data available for the os-

mium isotopes. The recent lifetime measurements in 188,190Os
(up to spin 8+ in the ground band, up to spin 6+ in the γ
band, and for the 4+ state of the Kπ = 4+ band) by Wu
et al. [11] yield B(E2) values that agree with B(E2) values
calculated using the E2 matrix elements in Table I. Coulomb
excitation studies carried out prior to the work of Wu et al. [10]
are more limited in scope and generally less precise and so
were not considered for the present study. A muonic x-ray

study by Hoehn et al. [23] reports values for B(E2; 0+
1 → 2+

1 )
and Q(2+

1 ) for 186−192Os. The B(E2) values show fair to
good consistency with the corresponding E2 matrix elements.
The Q(2+

1 ) values show only moderate consistency with the
corresponding E2 matrix elements. Details are given later.

Equation (3) and the values of F and G in Table I
immediately suggest a useful approximation in applying the
model: for properties of the K = 0 and K = 2 bands, the
influence of higher K bands appears likely to be negligible,
because 4

√
7|G| ≪ [E(K = 4) − E(K = 2)] = 12F . Thus,

we first study a two-state mixing description within the triaxial
rotor model, for which

H (I ) =
(

AI (I + 1) G
√

2(I − 1)I (I + 1)(I + 2)
G

√
2(I − 1)I (I + 1)(I + 2) AI (I + 1) + 4F

)
, (23)

I = 2, 4, 6, 8, . . . (the I = 3, 5, 7, . . . states in the K = 2 band
will be unmixed). The resulting mixing angles for the even-spin
states are given by

tan(2#I ) =
√

(I − 1)I (I + 1)(I + 2)
24

tan(2#). (24)

TABLE II. Parameter values for 186−192Os. Note that G depends
on #, cf. Eq. (6).

Mass A (keV) F (keV) Q0 (eb) γ (deg) # (deg) G (keV)

186 22.86 157.6 5.582 20.43 −2.40 −3.82
188 25.84 119.5 5.254 19.93 −2.98 −3.60
190 31.12 92.8 5.051 22.12 −5.94 −5.64
192 34.30 70.8 4.814 25.19 −8.74 −6.44

Following reduction using the Wigner-Eckart theorem, the E2
matrix elements involving I > 2 do not have the simple forms
manifested in Eqs. (9)–(12), except

⟨21∥T̂ (E2)∥31⟩ =
√

25
32π

Q0 sin(γ + #), (25)

⟨22∥T̂ (E2)∥31⟩ = −
√

25
32π

Q0 cos(γ + #), (26)

⟨31∥T̂ (E2)∥31⟩ = 0, (27)

and for I odd

⟨If ∥T̂ (E2)∥Ii⟩ = Q0

√
5

16π

√
2Ii + 1 cos γ ⟨Ii2; 20|If 2⟩,

(28)
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TABLE VI. Values of ⟨∥E2∥⟩ in eb calculated using the full diagonalization as described in the text for 186−192Os.
The values of F and G used differ from Table II and are discussed in the text. See the caption to Table III for the
explanation of other details.

186Os 188Os 190Os 192Os

21 − 01 1.6697 (−0.3%) 1.5812 (−0.2%) 1.5190 (−0.7%) 1.4414 (−1.0%)
41 − 21 2.7170 (−1.6%) 2.5761 (−2.5%) 2.4853 (+5.0%) 2.3628 (+11.7%)
61 − 41 3.512 (−9.7%) 3.338 (+0.8%) 3.2369 (+9.0%) 3.1448 (+7.3%)
81 − 61 4.237 (−1.9%) 4.035 (+1.6%) 4.009 (+7.8%) 3.840 (+7.3%)

42 − 22 1.7509 (−10.9%) 1.661 (−6.7%) 1.6115 (−13.9%) 1.5580 (−4.8%)
62 − 42 2.865 (+3.0%) 2.668 (+8.5%) 2.224 (−14.5%) 2.172 (+3.9%)
82 − 62 3.550 (+8.9%) 3.303 (+29.5%) 3.105 (+19.4%) 2.906 (+25.8%)

22 − 01 0.5581 (+2.4%) 0.4958 (+2.6%) 0.4800 (+8.1%) 0.4771 (11.0%)
22 − 21 0.8668 (−3.4%) 0.8362 (−3.3%) 0.9888 (−7.2%) 1.1406 (−7.3)
22 − 41 0.2949 (+29.9%) 0.3072 (−18.7%) 0.401 (+111.0%) 0.455 (+30.0%)
42 − 21 0.3471 (−17.2%) 0.2357 (−16.7%) 0.0572,(−71.8%) −0.0402 (−130.9%)
42 − 41 1.2524 (+2.7%) 1.187 (+7.9%) 1.2849 (−10.5%) 1.309 (−3.1%)
42 − 61 0.634 (−5.4%) 0.640 (+12.2%) 0.867 (+31.3%) 0.587 (+46.8%)
62 − 41 0.1535 (−52.8%) 0.0141 (−88.9%) −0.3927 (−301.4%) −0.1797 (−360.4%)
62 − 61 1.406 (+2.6%) 1.276 (−12.6%) 1.123 (−36.2%) 1.105 (−25.9%)

21 − 21 −1.917 (−9.6%) −1.795 (−3.8%) −1.627 (−30.2%) −1.411 (−16.7%)
41 − 41 −2.218 (−9.8%) −2.017 (−0.8%) −1.576 (−23.1%) −1.104 (−51.3%)
61 − 61 −2.261 (−35.40%) −1.987 (−24.2%) −1.170 (−28.6%) −0.822 (+29.2%)
81 − 81 −2.160 (+4.4%) −1.874 (−35.8%) −1.234 (−31.3%) −0.719 (+45.1%)

22 − 22 1.917 (−9.6%) 1.795 (−14.5%) 1.627 (+6.3%) 1.4115 (+43.3%)
42 − 42 −1.179 (−5.3%) −1.136 (+6.9%) −1.102 (+15.6%) −0.826 (+0.5%)
62 − 62 −2.168 (⊘) −1.938 (−45.7%) −0.818 (−2.2%) −0.751 (+44.4%)
82 − 82 −2.547 (⊘) −2.181 (⊘) −1.484 (−41.3%) −0.999 (−9.7%)

set of E2 matrix elements available from the multi-Coulex
study of Wu et al. [10], and so it is not possible to compare
their calculations with ours. Also, that work did not consider
the evidence for hexadecapole and proton two-quasiparticle
character in the 4+,K = 4 states, which has been a leading
concern in our study.

In summary, the triaxial rotor model with independent
inertia and E2 tensors [9] is able to provide a uniform
quantitative description of large sets of E2 matrix elements
in candidate triaxial nuclei. The apparently counter-intuitive
feature of decreasing diagonal matrix elements and increasing
transition matrix elements, with increasing spin, involving the
same sets of states is explained as being due to admixtures
of higher K band configurations into the low K bands.
The electric quadrupole parameter Q0 remains stable with

increasing spin, as reflected in the description of transition
matrix elements in the ground-state band. The separation of
triaxiality of the electric quadrupole tensor from the triaxiality
of the inertia tensor (the angles γ and ") in the model shows
that there is a dependence of " on spin (Fig. 7) such that,
cf. Eq. (6), G decreases with increasing spin. We note that
this would explain nonlinearities in Mikhailov plots, such
as were observed in our precision study [27] of 166Er, i.e.,
a decreasing magnitude of the slope, M2, at high spin (cf.
Fig. 5 in Ref. [27]). Indeed, the energy parameters A and
G of the model exhibit a spin dependence. This is widely
known for A, but is revealed here to be true also for G. The
implication is that F is also spin dependent. The description
of the E2 properties of the 4+,K = 4 state strongly points
to missing E2 strength in the Os isotopes. This agrees with

TABLE VII. Values of ⟨∥E2∥⟩ in eb involving the 4+
3 (K = 4) states calculated using the full diagonalization as

described in the text and the caption to Table VI.

186Os 188Os 190Os 192Os

43 − 21 ∼0.000(−100.4%) 0.0058 (−95.2%) 0.0395 (−24.1%) 0.0916 (−20.4%)
43 − 22 0.7971 (−33.0%) 0.677 (−18.4) 0.554 (−28.1%) 0.4206 (−46.5%)
43 − 31 0.975 (−35.8%) 0.970 (−17.1%) 1.217 (−21.5%) 1.433 (−12.1%)
43 − 42 0.899 (−50.8%) 0.975 (−40.5%) 1.468 (−7.6%) 1.960 (+64.7%)
43 − 43 3.397 (+44.5%) 3.153 (+17.7%) 2.678 (+162.6%) 1.930 (+50.8)
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TABLE III. Values of ⟨∥E2∥⟩eb calculated using K = 0, 2 (two-band) mixing as described in the text for
186−192Os. The % values are the differences (⟨∥E2∥⟩th − ⟨∥E2∥⟩ex) × 100/|⟨∥E2∥⟩ex|. The values are given to one
decimal place more than the experimental quantities. The values of Q0, γ , and ", which are all that are needed for
E2 properties, are taken from Table II.

186Os 188Os 190Os 192Os

21 − 01 1.6741(fit) 1.5851(fit) 1.5299(fit) 1.4561(fit)

41 − 21 2.7281 (−1.2%) 2.5840 (−2.2%) 2.4933 (+5.3%) 2.3673 (+11.9%)
61 − 41 3.533 (−9.2%) 3.351 (+1.2%) 3.2769 (+10.3%) 3.1438 (+7.3%)
81 − 61 4.257 (−1.5%) 4.039 (+1.7%) 3.946 (+6.1%) 3.770 (+5.3%)
101 − 81 4.903 (−2.3%) 4.640 (−7.5%) 4.501 (+13.1%) 4.290 (+12.9%)
121 − 101 5.466 (+5.9%) 5.160 (+31.4%) 4.985 (⊘) 4.748 (⊘)

42 − 22 1.6505 (−16.0%) 1.547 (−13.1%) 1.3996 (−25.2%) 1.2488 (−23.7%)
62 − 42 2.674 (−3.8%) 2.498 (+1.5%) 2.259 (−13.1%) 2.032 (−2.8%)
82 − 62 3.244 (−0.5%) 3.043 (+19.3%) 2.784 (+7.1%) 2.506 (+8.5%)
102 − 82 3.682 (+6.7%) 3.470 (⊘) 3.195 (⊘) 2.877 (⊘)

22 − 01 0.5449(fit) 0.4831(fit) 0.4439(fit) 0.4299(fit)

22 − 21 0.8969(fit) 0.8648(fit) 1.0647(fit) 1.2300(fit)

22 − 41 0.3156 (+39.0%) 0.3222 (−14.8%) 0.407 (+114.4%) 0.409 (+17.0%)
42 − 21 0.2834 (−32.4%) 0.1776 (−37.2%) −0.0638 (−131.4%) −0.1498 (−215.2%)
42 − 41 1.2722 (+4.3%) 1.198 (+8.9%) 1.2537 (−12.6%) 1.215 (−10.0%)
42 − 61 0.630 (−6.0%) 0.604 (+6.0%) 0.498 (−24.5%) 0.328 (−17.9%)
62 − 41 0.0747 (−77.0%) −0.0340 (−126.8%) −0.1690 (−186.7%) −0.1208 (−275.1%)
62 − 61 1.340 (−2.2%) 1.191 (−18.4%) 0.978 (−44.4%) 0.832 (−44.1%)

21 − 21 −1.903 (−8.8%) −1.782 (−3.0%) −1.579 (−26.3%) −1.334 (−10.3%)
41 − 41 −2.148 (−6.3%) −1.954 (+2.3%) −1.431 (−11.8%) −0.982 (−34.6%)
61 − 61 −2.155 (−29.0%) −1.926 (−20.4%) −1.357 (−49.1%) −0.955 (+17.6%)
81 − 81 −2.127 (+5.9%) −1.928 (−39.7%) −1.457 (−54.9%) −1.081 (+17.48%)

22 − 22 1.903 (−10.2%) 1.782 (−15.2%) 1.579 (+3.2%) 1.3343 (+35.5%)
42 − 42 −1.384 (−23.5%) −1.381 (−13.2%) −1.728 (−33.9%) −1.959 (−136.0%)
62 − 62 −2.990 (⊘) −2.932 (−120.5%) −3.246 (−305.7%) −3.329 (−146.6%)
82 − 82 −4.141 (⊘) −3.990 (⊘) −4.151(−295.3%) −4.139 (−354.8%)

where ⟨Ii2; 20|If 2⟩ is a Clebsch-Gordan coefficient. The E2
matrix elements are given here in general form for 2 × 2
mixing in the g-band (K = 0) and γ -band (K = 2) subspace,2

|I2⟩♦ ≡ 1√
2

(
|I2⟩ + (−1)I+2|I,−2⟩

)
, (29)

|I0⟩♦ ≡ |I0⟩, (30)

|Ii⟩ = c1|Ii0⟩♦ + c2|Ii2⟩♦, (31)

|If ⟩ = c3|If 0⟩♦ + c4|If 2⟩♦, (32)

⟨If ∥T̂ (E2)∥Ii⟩ = Q0

√
5

16π

√
2Ii + 1

× {c1c3 cos γ ⟨Ii0; 20|If 0⟩
+ c1c4 sin γ ⟨Ii2; 2,−2|If 0⟩
+ c2c3 sin γ ⟨Ii0; 22|If 2⟩
+ c2c4 cos γ ⟨Ii2; 20|If 2⟩}, (33)

These general matrix elements apply to odd spin as well (e.g.,
c1 = c3 = 0 and c2 = c4 = 1). For even spin, the c’s are the
amplitudes cos "I and sin "I .

The results of our two-band mixing calculations, using the
parameters given in Table II, are shown in Table III. The
fits can be summarized: (excluding the three matrix elements
used to determine Q0, γ , and " in each nucleus) 26 out of
31 intraband transition matrix elements are fitted to better
than 14%; 17 out of 24 interband transition matrix elements
are fitted to better than 45%; 20 of the 29 diagonal matrix
elements are fitted to better than 35%. There are notable
failures for $I = −2 interband transitions and K = 2 band
diagonal matrix elements. We explore these failures below.

The reliability of the values of Q0 in each of the Os isotopes,
cf. Table II and Eq. (17), is reflected in the agreement for
the ground-band (both off-diagonal and diagonal) and γ -band

2We use γ to designate the triaxiality angle of the electric
quadrupole tensor and, separately, the K = 2 band in the model space.
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TABLE VI. Values of ⟨∥E2∥⟩ in eb calculated using the full diagonalization as described in the text for 186−192Os.
The values of F and G used differ from Table II and are discussed in the text. See the caption to Table III for the
explanation of other details.

186Os 188Os 190Os 192Os

21 − 01 1.6697 (−0.3%) 1.5812 (−0.2%) 1.5190 (−0.7%) 1.4414 (−1.0%)
41 − 21 2.7170 (−1.6%) 2.5761 (−2.5%) 2.4853 (+5.0%) 2.3628 (+11.7%)
61 − 41 3.512 (−9.7%) 3.338 (+0.8%) 3.2369 (+9.0%) 3.1448 (+7.3%)
81 − 61 4.237 (−1.9%) 4.035 (+1.6%) 4.009 (+7.8%) 3.840 (+7.3%)

42 − 22 1.7509 (−10.9%) 1.661 (−6.7%) 1.6115 (−13.9%) 1.5580 (−4.8%)
62 − 42 2.865 (+3.0%) 2.668 (+8.5%) 2.224 (−14.5%) 2.172 (+3.9%)
82 − 62 3.550 (+8.9%) 3.303 (+29.5%) 3.105 (+19.4%) 2.906 (+25.8%)

22 − 01 0.5581 (+2.4%) 0.4958 (+2.6%) 0.4800 (+8.1%) 0.4771 (11.0%)
22 − 21 0.8668 (−3.4%) 0.8362 (−3.3%) 0.9888 (−7.2%) 1.1406 (−7.3)
22 − 41 0.2949 (+29.9%) 0.3072 (−18.7%) 0.401 (+111.0%) 0.455 (+30.0%)
42 − 21 0.3471 (−17.2%) 0.2357 (−16.7%) 0.0572,(−71.8%) −0.0402 (−130.9%)
42 − 41 1.2524 (+2.7%) 1.187 (+7.9%) 1.2849 (−10.5%) 1.309 (−3.1%)
42 − 61 0.634 (−5.4%) 0.640 (+12.2%) 0.867 (+31.3%) 0.587 (+46.8%)
62 − 41 0.1535 (−52.8%) 0.0141 (−88.9%) −0.3927 (−301.4%) −0.1797 (−360.4%)
62 − 61 1.406 (+2.6%) 1.276 (−12.6%) 1.123 (−36.2%) 1.105 (−25.9%)

21 − 21 −1.917 (−9.6%) −1.795 (−3.8%) −1.627 (−30.2%) −1.411 (−16.7%)
41 − 41 −2.218 (−9.8%) −2.017 (−0.8%) −1.576 (−23.1%) −1.104 (−51.3%)
61 − 61 −2.261 (−35.40%) −1.987 (−24.2%) −1.170 (−28.6%) −0.822 (+29.2%)
81 − 81 −2.160 (+4.4%) −1.874 (−35.8%) −1.234 (−31.3%) −0.719 (+45.1%)

22 − 22 1.917 (−9.6%) 1.795 (−14.5%) 1.627 (+6.3%) 1.4115 (+43.3%)
42 − 42 −1.179 (−5.3%) −1.136 (+6.9%) −1.102 (+15.6%) −0.826 (+0.5%)
62 − 62 −2.168 (⊘) −1.938 (−45.7%) −0.818 (−2.2%) −0.751 (+44.4%)
82 − 82 −2.547 (⊘) −2.181 (⊘) −1.484 (−41.3%) −0.999 (−9.7%)

set of E2 matrix elements available from the multi-Coulex
study of Wu et al. [10], and so it is not possible to compare
their calculations with ours. Also, that work did not consider
the evidence for hexadecapole and proton two-quasiparticle
character in the 4+,K = 4 states, which has been a leading
concern in our study.

In summary, the triaxial rotor model with independent
inertia and E2 tensors [9] is able to provide a uniform
quantitative description of large sets of E2 matrix elements
in candidate triaxial nuclei. The apparently counter-intuitive
feature of decreasing diagonal matrix elements and increasing
transition matrix elements, with increasing spin, involving the
same sets of states is explained as being due to admixtures
of higher K band configurations into the low K bands.
The electric quadrupole parameter Q0 remains stable with

increasing spin, as reflected in the description of transition
matrix elements in the ground-state band. The separation of
triaxiality of the electric quadrupole tensor from the triaxiality
of the inertia tensor (the angles γ and ") in the model shows
that there is a dependence of " on spin (Fig. 7) such that,
cf. Eq. (6), G decreases with increasing spin. We note that
this would explain nonlinearities in Mikhailov plots, such
as were observed in our precision study [27] of 166Er, i.e.,
a decreasing magnitude of the slope, M2, at high spin (cf.
Fig. 5 in Ref. [27]). Indeed, the energy parameters A and
G of the model exhibit a spin dependence. This is widely
known for A, but is revealed here to be true also for G. The
implication is that F is also spin dependent. The description
of the E2 properties of the 4+,K = 4 state strongly points
to missing E2 strength in the Os isotopes. This agrees with

TABLE VII. Values of ⟨∥E2∥⟩ in eb involving the 4+
3 (K = 4) states calculated using the full diagonalization as

described in the text and the caption to Table VI.

186Os 188Os 190Os 192Os

43 − 21 ∼0.000(−100.4%) 0.0058 (−95.2%) 0.0395 (−24.1%) 0.0916 (−20.4%)
43 − 22 0.7971 (−33.0%) 0.677 (−18.4) 0.554 (−28.1%) 0.4206 (−46.5%)
43 − 31 0.975 (−35.8%) 0.970 (−17.1%) 1.217 (−21.5%) 1.433 (−12.1%)
43 − 42 0.899 (−50.8%) 0.975 (−40.5%) 1.468 (−7.6%) 1.960 (+64.7%)
43 − 43 3.397 (+44.5%) 3.153 (+17.7%) 2.678 (+162.6%) 1.930 (+50.8)

014302-9

NOTE:	major	devia@ons	are	for	smallest	M.E.’s	(destruc@ve	interference)	



A	triaxial	rotor	model:	
case	study--the	Os	isotopes	

TRIAXIAL ROTOR MODEL DESCRIPTION OF E2 . . . PHYSICAL REVIEW C 78, 014302 (2008)

TABLE VI. Values of ⟨∥E2∥⟩ in eb calculated using the full diagonalization as described in the text for 186−192Os.
The values of F and G used differ from Table II and are discussed in the text. See the caption to Table III for the
explanation of other details.

186Os 188Os 190Os 192Os

21 − 01 1.6697 (−0.3%) 1.5812 (−0.2%) 1.5190 (−0.7%) 1.4414 (−1.0%)
41 − 21 2.7170 (−1.6%) 2.5761 (−2.5%) 2.4853 (+5.0%) 2.3628 (+11.7%)
61 − 41 3.512 (−9.7%) 3.338 (+0.8%) 3.2369 (+9.0%) 3.1448 (+7.3%)
81 − 61 4.237 (−1.9%) 4.035 (+1.6%) 4.009 (+7.8%) 3.840 (+7.3%)

42 − 22 1.7509 (−10.9%) 1.661 (−6.7%) 1.6115 (−13.9%) 1.5580 (−4.8%)
62 − 42 2.865 (+3.0%) 2.668 (+8.5%) 2.224 (−14.5%) 2.172 (+3.9%)
82 − 62 3.550 (+8.9%) 3.303 (+29.5%) 3.105 (+19.4%) 2.906 (+25.8%)

22 − 01 0.5581 (+2.4%) 0.4958 (+2.6%) 0.4800 (+8.1%) 0.4771 (11.0%)
22 − 21 0.8668 (−3.4%) 0.8362 (−3.3%) 0.9888 (−7.2%) 1.1406 (−7.3)
22 − 41 0.2949 (+29.9%) 0.3072 (−18.7%) 0.401 (+111.0%) 0.455 (+30.0%)
42 − 21 0.3471 (−17.2%) 0.2357 (−16.7%) 0.0572,(−71.8%) −0.0402 (−130.9%)
42 − 41 1.2524 (+2.7%) 1.187 (+7.9%) 1.2849 (−10.5%) 1.309 (−3.1%)
42 − 61 0.634 (−5.4%) 0.640 (+12.2%) 0.867 (+31.3%) 0.587 (+46.8%)
62 − 41 0.1535 (−52.8%) 0.0141 (−88.9%) −0.3927 (−301.4%) −0.1797 (−360.4%)
62 − 61 1.406 (+2.6%) 1.276 (−12.6%) 1.123 (−36.2%) 1.105 (−25.9%)

21 − 21 −1.917 (−9.6%) −1.795 (−3.8%) −1.627 (−30.2%) −1.411 (−16.7%)
41 − 41 −2.218 (−9.8%) −2.017 (−0.8%) −1.576 (−23.1%) −1.104 (−51.3%)
61 − 61 −2.261 (−35.40%) −1.987 (−24.2%) −1.170 (−28.6%) −0.822 (+29.2%)
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study of Wu et al. [10], and so it is not possible to compare
their calculations with ours. Also, that work did not consider
the evidence for hexadecapole and proton two-quasiparticle
character in the 4+,K = 4 states, which has been a leading
concern in our study.

In summary, the triaxial rotor model with independent
inertia and E2 tensors [9] is able to provide a uniform
quantitative description of large sets of E2 matrix elements
in candidate triaxial nuclei. The apparently counter-intuitive
feature of decreasing diagonal matrix elements and increasing
transition matrix elements, with increasing spin, involving the
same sets of states is explained as being due to admixtures
of higher K band configurations into the low K bands.
The electric quadrupole parameter Q0 remains stable with

increasing spin, as reflected in the description of transition
matrix elements in the ground-state band. The separation of
triaxiality of the electric quadrupole tensor from the triaxiality
of the inertia tensor (the angles γ and ") in the model shows
that there is a dependence of " on spin (Fig. 7) such that,
cf. Eq. (6), G decreases with increasing spin. We note that
this would explain nonlinearities in Mikhailov plots, such
as were observed in our precision study [27] of 166Er, i.e.,
a decreasing magnitude of the slope, M2, at high spin (cf.
Fig. 5 in Ref. [27]). Indeed, the energy parameters A and
G of the model exhibit a spin dependence. This is widely
known for A, but is revealed here to be true also for G. The
implication is that F is also spin dependent. The description
of the E2 properties of the 4+,K = 4 state strongly points
to missing E2 strength in the Os isotopes. This agrees with
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FIG. 1. Population of levels in 186Os (left) and 188Os (right) from (3He, d) reactions with a 40◦ scattering angle.

detector and data acquisition system. The entire spectrograph
was rotated through nine different angle settings, between 5◦

and 50◦, to map out the cross sections as a function of angle.
Two magnetic field settings of the spectrograph recorded data
for states up to approximately 3 MeV in excitation energy.
The typical resolution achieved ranged from 6.3 to 13.0 keV
full width at half maximum (FWHM). Targets of Pt were
used for an energy calibration above 1.5 MeV, under identical
conditions, since the peaks from the 194,195Pt(3He, d)195,196Au
reactions are well known [28]. The energy uncertainty for
strong, well-resolved peaks is approximately 1 keV, deter-
mined from both statistical uncertainty in the peak position
and the uncertainty in the calibration polynomial.

IV. RESULTS

Sample spectra from the 185,187Re(3He, d)186,188Os reac-
tions are shown in Fig. 1. The spectra were fitted with the
program GF3 from the RADWARE software package [29]. The
global peak-shape parameters, the FWHM of the Gaussian,
and the parameters for the exponential tail were fixed using a
least-squares fit of the data up to a second-degree polynomial.
Peak areas were transformed into cross sections using the
target thickness, beam current, and Q3D solid angle.

The kinematics of the (3He, d) reaction are such that at large
angles, in the present case above 35◦, the deuterons from the
185,187Re(3He, d)186,188Os reactions are well separated from
those originating from lighter-mass impurities present in the
target or the backing. However, as small angles are approached,
the prolific reactions on lighter-mass target components, such
as C, can result in broad, irregularly shaped peaks in the
spectrum that make extraction of accurate cross sections in
some regions of the spectrum impossible. Figure 2 displays
angular distributions for some low-lying states in 186,188Os,
where data points affected by impurity peaks have been
removed. The curves shown are the result of distorted-wave
Born approximation (DWBA) calculations, described below,
for the transferred ℓ value indicated.

The DWBA calculations were performed with standard
published sets of optical model parameters [28,30] using the
DWUCK4 program [31]. The parameter set from Ref. [30]

was used without a radial cutoff and without nonlocal and
finite-range corrections. The data are well described by both
sets of parameters, but the set from Ref. [28] matches the shape
better.

It is noteworthy that the angular distributions for transfer
into the 186,188Os ground states, as shown in Fig. 2, which
must be the result of a single ℓ transfer, are very well
described. In addition, the transfer into the 2+ member of
the ground-state band, and the I,Kπ = 2, 2+ γ bandhead,
are also well reproduced by the DWBA curve for ℓ = 2 and
ℓ = 0, respectively. These results provide confidence that the
(3He, d) reactions at the beam energies employed do not have
significant contributions from multistep processes.

The spectroscopic strengths, Sℓ, were calculated by scaling
DWBA calculations to the measured transfer cross sections
according to the formula

Sℓ =
dσ
d%

∣∣
expt

[N dσ
d%

(θ, ℓ, j )]DWBA
, (1)

where the numerator is the measured cross section, and the
denominator is the normalized DWBA calculation. While in
principle the transfer can occur for any j and ℓ values that
satisfy parity and angular-momentum selection rules, it is
observed that the experimental angular distributions appear to
be dominated by a single ℓ transfer, and thus the reported spec-
troscopic strengths are the result of a fit with a single ℓ value.
Although there is evidence that the Os isotopes possess soft-
ness in the γ degree of freedom, especially for A > 190, the
Nilsson model with axial symmetry is employed to extract
the amplitudes of the two-quasiparticle configurations in
the ground-state, γ -vibrational, and Kπ = 4+ bands in both
186,188Os. The spectroscopic strengths reported in Fig. 2 are an
average of those obtained using the optical model parameters
from Refs. [28,30]. A typical ±30% systematic uncertainty
was adopted in all spectroscopic strengths reported.

Predictions for the cross sections for two-quasiparticle
states were performed with the program EVE [32] that uses the
Nilsson model calculations as outlined by Chi [33]. The values
of κ and µ were taken to be 0.0637 and 0.600 [34]. The
deformation δ2 was set to 0.2, and the U 2 pairing factors were
determined using the BCS formalism, with the quasiparticle
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FIG. 1. Population of levels in 186Os (left) and 188Os (right) from (3He, d) reactions with a 40◦ scattering angle.

detector and data acquisition system. The entire spectrograph
was rotated through nine different angle settings, between 5◦

and 50◦, to map out the cross sections as a function of angle.
Two magnetic field settings of the spectrograph recorded data
for states up to approximately 3 MeV in excitation energy.
The typical resolution achieved ranged from 6.3 to 13.0 keV
full width at half maximum (FWHM). Targets of Pt were
used for an energy calibration above 1.5 MeV, under identical
conditions, since the peaks from the 194,195Pt(3He, d)195,196Au
reactions are well known [28]. The energy uncertainty for
strong, well-resolved peaks is approximately 1 keV, deter-
mined from both statistical uncertainty in the peak position
and the uncertainty in the calibration polynomial.

IV. RESULTS

Sample spectra from the 185,187Re(3He, d)186,188Os reac-
tions are shown in Fig. 1. The spectra were fitted with the
program GF3 from the RADWARE software package [29]. The
global peak-shape parameters, the FWHM of the Gaussian,
and the parameters for the exponential tail were fixed using a
least-squares fit of the data up to a second-degree polynomial.
Peak areas were transformed into cross sections using the
target thickness, beam current, and Q3D solid angle.

The kinematics of the (3He, d) reaction are such that at large
angles, in the present case above 35◦, the deuterons from the
185,187Re(3He, d)186,188Os reactions are well separated from
those originating from lighter-mass impurities present in the
target or the backing. However, as small angles are approached,
the prolific reactions on lighter-mass target components, such
as C, can result in broad, irregularly shaped peaks in the
spectrum that make extraction of accurate cross sections in
some regions of the spectrum impossible. Figure 2 displays
angular distributions for some low-lying states in 186,188Os,
where data points affected by impurity peaks have been
removed. The curves shown are the result of distorted-wave
Born approximation (DWBA) calculations, described below,
for the transferred ℓ value indicated.

The DWBA calculations were performed with standard
published sets of optical model parameters [28,30] using the
DWUCK4 program [31]. The parameter set from Ref. [30]

was used without a radial cutoff and without nonlocal and
finite-range corrections. The data are well described by both
sets of parameters, but the set from Ref. [28] matches the shape
better.

It is noteworthy that the angular distributions for transfer
into the 186,188Os ground states, as shown in Fig. 2, which
must be the result of a single ℓ transfer, are very well
described. In addition, the transfer into the 2+ member of
the ground-state band, and the I,Kπ = 2, 2+ γ bandhead,
are also well reproduced by the DWBA curve for ℓ = 2 and
ℓ = 0, respectively. These results provide confidence that the
(3He, d) reactions at the beam energies employed do not have
significant contributions from multistep processes.

The spectroscopic strengths, Sℓ, were calculated by scaling
DWBA calculations to the measured transfer cross sections
according to the formula

Sℓ =
dσ
d%

∣∣
expt

[N dσ
d%

(θ, ℓ, j )]DWBA
, (1)

where the numerator is the measured cross section, and the
denominator is the normalized DWBA calculation. While in
principle the transfer can occur for any j and ℓ values that
satisfy parity and angular-momentum selection rules, it is
observed that the experimental angular distributions appear to
be dominated by a single ℓ transfer, and thus the reported spec-
troscopic strengths are the result of a fit with a single ℓ value.
Although there is evidence that the Os isotopes possess soft-
ness in the γ degree of freedom, especially for A > 190, the
Nilsson model with axial symmetry is employed to extract
the amplitudes of the two-quasiparticle configurations in
the ground-state, γ -vibrational, and Kπ = 4+ bands in both
186,188Os. The spectroscopic strengths reported in Fig. 2 are an
average of those obtained using the optical model parameters
from Refs. [28,30]. A typical ±30% systematic uncertainty
was adopted in all spectroscopic strengths reported.

Predictions for the cross sections for two-quasiparticle
states were performed with the program EVE [32] that uses the
Nilsson model calculations as outlined by Chi [33]. The values
of κ and µ were taken to be 0.0637 and 0.600 [34]. The
deformation δ2 was set to 0.2, and the U 2 pairing factors were
determined using the BCS formalism, with the quasiparticle
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Fig. 1. The a-particle spectrum from the 191 It(t, e) 190Os reac- 
t ion at 0 = 50 °. 

mental cross sections in table 1, that the intensities 
for the I, K ~r = 4,4 + levels are comparable to those 
for the ground states. As these are among the largest 
peaks in the spectra, it would appear that the I, K ~r 
= 4,4 + levels must contain fairly large two-quasipro- 
ton admixtures. The most likely two-quasiproton con- 
figuratmn would involve the coupling of the 22+ [402] 
target proton with the-~+ [402] orbital. The latter 
should be a low-lying proton hole state in this region 
as it forms the ground state for most of the odd rhe- 
nium (Z = 75) nuclei. There are no other Nilsson 
states in this mass region which would be expected to 

yield such large cross sections to I, K ~r = 4,4 + states in 
the (t, a) reaction. 

In considering the nature of the K ~r = 4 + states, it 
is realized that some degree of collectivity is present. 
The bands lie considerably below the energy gap (2A 

1600 keV as determined from the mass tables), the 
observed (t, a) strengths are significantly less than ex- 
pected for pure two-quasiproton states, and the levels 
are populated weakly but significantly in inelastic scat- 
tering experiments [7]. 

As the two-phonon states are composed in general 
of four-quaslparticle configurations, such levels should 
not be populated strongly in a single-nucleon transfer 
reaction on a target where the odd nucleon was in a 
pure single-quasiparticle state. One might also expect 
the K ~r = 4 + two-phonon state to be shifted from twice 
the smgle-phonon energy, since a fair portion of the 
K n = 4 + wave function may violate the Pauli exclusion 
principle due to the aligned K quantum number of two 
7-phonons. The discussion which follows will show 
that these I, K ~r = 4,4 + states may be reasonably ex- 
plained as single-phonon hexadecapole vibrations. 
These vibrations are expected to contain large ampli- 
tudes of the {~+ [402] + {+ [402] }K=4 configura- 
tion and therefore account for the present results in a 
logical way. 

The conventional strong-couphng model with the 
particle-gamma vibration coupling effect included has 
been used to analyse the present data. The harmonic 

Table 1 
Summary of experimental and theoretical cross sections at 0 = 50 °. 

I, K ~r 

191 It(t, c~) 19°Os 1931r(t, a) 192Os 

Excitation Experimental Calculated a Excitation Experimental Calculated a 
energy cross section cross section energy cross section cross section 
(keV) (#b/str) (#b/str) (keV) (#b/str) (#b/str) 

0,0 + 0 22.1 +- 1.1 26.6 
2,0 + 185 28.7 -+ 1.2 23.0 

[34.4] b 
4'0+ 558 1.2 +- 0.1 c 1.0 
2,2 + 8.0 +- 0.6 c 10.7 
3,2 + 755 2.4 +- 0.4 1.5 
4,2 + 955 4.5 +- 0.5 1.1 
4,4 + 1163 27.8 ~ 1.2 27.6 

0 31.3 -+ 1.0 30.8 
207 37.9 +- 1.1 24.5 

[34.91 b 
579 1.8 -+ 0.2 0.9 
489 12.1 +- 0.6 12.5 
691 2.5 -+ 0.3 1.4 
910 9.8 -+ 0.6 1.1 

1069 29.3 +- 1.0 27.7 

a N = 40 Is assumed as the normalization factor for the (t, a) reaction. 
b Cross sections given in brackets include the two-step contribution. 
c Cross sections determined by using the same ratio as that in 192Os. 
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successive E2 excitations was first considered. The 
E2 strength for the transition from the ground state 

+ vibration was chosen in each nuclide to re- to the 2. r 
produce the observed (a, a') cross section to the 7- 
vibrational level. These strengths are expressed in 
terms of  the parameter/32 having values of  0.060, 
0.057 and 0.056 for 188Os, 190Os and 192Os, res- 

+ ~ 4~ transitions pectively. The E2 strengths for the 27 
are not known experimentally,  but in calculating the 
cross sections expected for the two-phonon configura- 
tions they were assumed to have the same values of  

+ ~2 as the 0 ;  ~ 27 transitions. Coulomb excitation was 
included in the calculations; the 132 values used to cha- 
racterize its strength were the same as those used for 
the nuclear excitation. The cross sections predicted in + 
this way for sequential E2 excitation of  the 43 levels 
appear as the lower curve for each of  the three nuclides 
in fig. 2. It is clear that these predictions are too small 
by typically one to two orders of  magnitude, whereas 
also the shape of  the angular distributions disagrees 
with the experimental results. The minimum near 
0 = 80 ° for the calculated curves is due to interference 
between the Coulomb and nuclear inelastic scattering 
amplitudes, a phenomenon noted in ref. [4]. + 

The possibility that the 43 states were populated by  

pure E4 excitations (combined nuclear and Coulomb) 
was considered next. Calculations for this case were 
performed with the only free parameter being the/~4 
value, which was chosen to reproduce the absolute 
magnitude of  the cross sections. These results are shown 
as the solid curves in fig. 2, where it is seen that the 
shape of  the angular distributions is in excellent agree- 
ment with the experimental results. The values of/34 
needed to fit the absolute cross sections as shown are 
[/34[ = 0.027, 0.019 and 0.017 for 188Os, 190Os and 
192Os, respectively. These are smaller than, but  of  the 
same order as, the magnitudes of ~4 = - 0 . 0 2  to ~34 = 
- 0 . 0 8  reported by  Baker et al. [4] for the ground- 
state bands. Hence it is seen that,  whereas the two- 
phonon interpretat ion explains neither the shape of  
the angular distributions nor the absolute strengths, 
all these data can be well described on the basis of  
single E4 excitations using reasonable values of  the 
deformation parameters/34" 

A more realistic situation, however, is to assume 
that both  these types of  excitation may contribute to 
the population. Therefore the last set of  calculations 
included a coherent mixture of  the single E4 and the 
two-step E2 amplitudes. The relative phase of  these 
contributions is not  known, so calculations were made 
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FIG. 2. The ⟨2+
1 ||E2||2+

1 ⟩ and ⟨2+
2 ||E2||2+

2 ⟩ matrix elements from
Table I are plotted against each other. Data points on the solid 45◦

line give ⟨2+
1 ||E2||2+

1 ⟩ + ⟨2+
2 ||E2||2+

2 ⟩ = 0.

rotor model provides a simple, parameter-free starting point
in which one might begin to understand the simple patterns
observed in the data. Indeed, rotor models do not explain all the
patterns of the low-lying states of these nuclei, which is why,
in part, the widespread occurrence of the quadrupole-moment
correlations are surprising.

To broaden the scope of the theoretical discussion, cal-
culations within the interacting boson model [32] (IBM)
were carried out with the IBM1 fortran code from Van
Isacker [33] using the simple Hamiltonian of Ref. [34] with
consistent-Q formalism between the Hamiltonian and the
E2 operator. The IBM contains both spherical-vibrator and
deformed-rotor limits. IBM1 calculations in general require
various combinations of parameters to fit experimental data.
However, a few generalities can be stated about its ability to
reproduce the 2+ quadrupole-moment correlations that pertain
to all of its limits without going into optimal parameter sets
and calculations. In short, ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ ≈ 0

can be explained within the framework of the IBM1. However,
the idealization of a zero sum can only be reached exactly
within the IBM1 when large boson numbers are used. For finite
boson number, the IBM1 predicts that ⟨2+

1 ||E2||2+
1 ⟩ is always

greater in magnitude than ⟨2+
2 ||E2||2+

2 ⟩. This feature of the
IBM1 implies that the 2+ quadrupole-moment data should fall
to one side of the diagonal line in Fig. 2, as opposed to being
scattered uniformly about it. In particular, the data should fall
on or below the diagonal line for prolate nuclei and on or above
the diagonal line for oblate nuclei. However, shape coexistence
between two IBM1 subspaces could alter this prediction.

A detailed survey of the individual nuclei that make up
the 2+ quadrupole-moment data reveals various complexities
and seemingly contradictory interpretations. Despite these
complexities, the correlations in the 2+ quadrupole moments
appear simple. A detailed discussion of the various nuclei that
make up the 2+ quadrupole-moment data are in order, which
are discussed from smallest to largest quadrupole moments
(cf. Fig. 2).

The nuclei with the smallest quadrupole moments in
Fig. 2 are from the Ge and Se isotopes. Evidence for rigid
triaxiality in the Ge region has recently been presented for
76Ge through the use of energy and γ -ray branching-ratio
patterns [35]. This study has been highlighted as the best
manifestation of rigid triaxiality. For instance, the experimen-
tal ratio of E(4+

1 )/E(2+
1 ) = 2.51 [22] is close to the 2.67

ratio [26] expected for a triaxial rotor at γ = 30◦. Observa-
tion of the static quadrupole-moment sum, ⟨2+

1 ||E2||2+
1 ⟩ +

⟨2+
2 ||E2||2+

2 ⟩ = 0.18(10) eb (cf. Table I and Fig. 2), reveals
consistency with zero to within two standard deviations; this is
also true for the other Ge isotopes. The rather small quadruple
moments for a rigid deformed triaxial rotor can be justified
as a destructive interference effect between the inertia and
electric quadrupole tensors [36]. The neighboring Se isotopes
are also interesting for further investigations of triaxiality.
However, this entire region is potentially complex, which has
been highlighted by a recent multiple-step Coulomb-excitation
study of the nearby Kr isotopes [9], providing evidence for
shape-coexisting triaxiality.

The Cd and Pd region, which shows similar quadrupole-
moment magnitudes as the Pt isotopes, has traditionally
been considered vibrational-like based on energy patterns (cf.
Ref. [37] and references therein) and are typically considered
textbook examples of vibrations. In particular, 118Cd played a
key role in the establishment of the U(5) limit of the IBM [37],
which has quadrupole moments of zero in the strict limit.
However, there has recently been significant evidence against
a vibrational interpretation of this region [38–44], which has
E2 transition patterns that mimic quasirotational behavior. The
relatively low-lying deformed intruder states in the Cd isotopes
further complicate the interpretation of the structure owing
to potential mixing. The 2+ quadrupole moments for the Pd
isotopes, which are relatively large with uncertainties that are
better than 20% for all but one quadrupole moment in 110Pd,
show (cf. Table I and Figs. 1 and 2) remarkable consistency
with a zero sum. For 114Cd, ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ is

not near zero but it is interesting to note that the first and
second 2+ states have nonzero quadrupole moments (better
than 11% precision) that are opposite in sign. Fahlander
et al. [13], who measured the second 2+ quadrupole moment,
suggested that the 2+

2 state appears to be a quasi-γ bandhead,
as opposed to a two-phonon vibration member. A persistence
of deformed, rotational-like E2 character in these nuclei (and
others) is also supported from shape-invariant studies by
Kumar and Cline [45] (see also Ref. [46]) using transition
E2 matrix elements. For a more global view of nuclei
containing rotational-like E2 character with vibrational-like
energy patterns, see Refs. [47,48].

Additional ⟨2+
2 ||E2||2+

2 ⟩ matrix-element measurements for
the other Cd isotopes may provide valuable insight into
the underlying structure of these seemingly complex nuclei,
particularly for the neutron-rich and proton-rich isotopes
where the 2+ intruder levels are much higher in excitation
energy (i.e., less potential mixing with the 2+

1 and 2+
2 states).

In general, measurements for nuclei just above and below
Z = 50 (and about other closed shells), where collectivity
and deformation begin to emerge, would be of particular
interest.
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TABLE I. Experimental ⟨2+||E2||2+⟩ (eb) matrix elements and their summation, !.

68Zna,b [2] 70Gea [3] 72Ge [4] 74Ge [5] 76Ge [6] 76Se [7] 78Se [8] 80Se [7] 82Se [7]

2+
1 0.12(+4

−4) 0.05(+4
−4) −0.16(+10

−7 ) −0.25(+3
−3) −0.18(+5

−5) −0.45(+7
−7) −0.26(+9

−9) −0.26(+4
−3) −0.30(+4

−3)

2+
2 0.12(+8

−8) −0.09(+5
−5) 0.30(+10

−0 ) 0.34(+8
−8) 0.37(+8

−8) 0.24(+6
−8) 0.22(+12

−12) 0.53(+3
−3) 0.45(+4

−5)

! 0.24(+9
−9) −0.04(+7

−7) 0.14(+14
−7 ) 0.09(+8

−8) 0.18(+10
−10) −0.21(+9

−11) −0.04(+15
−15) 0.27(+5

−4) 0.15(+6
−6)

74Krb [9] 76Krb [9] 78Krb [10] 106Pd [11] 108Pd [11] 110Pd [12] 114Cd [13] 148Ndb [14] 150Ndb [15]

2+
1 −0.70(+33

−30) −0.9(+3
−3) −0.80(+4

−4) −0.72(+6
−7) −0.81(+4

−9) −0.87(+17
−15) −0.36(+1

−3) −1.85(+4
−5) −2.265(+40

−80)

2+
2 0.33(+28

−23) −1.0(+5
−5) 0.58(+4

−8) 0.52(+6
−5) 0.73(+9

−7) 0.70(+9
−32) 0.92(+4

−5) −1.15(+8
−12) −0.766(+40

−81)

! −0.37(+43
−38) −1.90(+58

−58) −0.22(+6
−9) −0.20(+8

−9) −0.08(+10
−11) −0.17(+19

−35) 0.56(+4
−6) −3.00(+9

−13) −3.03(+6
−11)

166Er [16] 168Er [17] 182W [18] 184W [18] 186Os [19] 188Os [19] 190Os [19] 192Os [19] 194Pta [20] 196Pta [21]

2+
1 −2.33(+19

−12) −3.25(+10
−25) −2.00(+4

−8) −1.97(+6
−4) −1.75(+22

−13) −1.73(+19
−5 ) −1.25(+22

−13) −1.21(+6
−17) 0.61(+6

−6) 0.82(+10
−10)

2+
2 2.97(+17

−15) 2.85(+9
−9) 1.94(+10

−4 ) 2.36(+11
−5 ) 2.12(+6

−22) 2.10(+9
−6) 1.53(+6

−31) 0.985(+45
−85) −0.66(+14

−14) −0.52(+20
−20)

! 0.64(+25
−19) −0.40(+13

−27) −0.06(+11
−9 ) 0.39(+13

−6 ) 0.37(+23
−26) 0.37(+21

−8 ) 0.28(+23
−34) −0.23(+8

−19) −0.05(+15
−15) 0.30(+22

−22)

aNucleus is oblate in shape.
b2+

2 associated with Kπ = 0+.

The simplest model that is consistent with the experimen-
tal observation of ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ ≈ 0 follows

from the quadrupole moments of rotor models (see Bohr and
Mottelson [23] and Rowe and Wood [25]). In the simplest
form, the diagonal reduced E2 matrix elements are given by

⟨IK||E2||IK⟩ = Q0

√
5

16π

√
2I + 1⟨IK; 20|IK⟩ (eb) (1)
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FIG. 1. The ⟨2+
1 ||E2||2+

1 ⟩ and ⟨2+
2 ||E2||2+

2 ⟩ matrix elements from
Table I are plotted together as functions of (a) the atomic number
Z, (b) the first 2+ energy, (c) the ratio of the first 4+ and 2+

energies, and (d) the ground to first 2+ E2 transition strength, where
⟨0+

1 ||E2||2+
1 ⟩ =

√
B(E2; 0+ → 2+). The solid circles are for 2+

1 and
the open circles are for 2+

2 .

and the corresponding static quadrupole moments are given
by

Q(IK) =
√

16π

5
⟨II ; 20|II ⟩√

2I + 1
⟨IK||E2||IK⟩ (eb)

= Q0
3K2 − I (I + 1)
(I + 1)(2I + 3)

(eb), (2)

where I is the total angular momentum, K is the projection of
the total angular momentum onto the body-frame symmetry
axis, and the parameter Q0 is the intrinsic electric quadrupole
deformation.

Within the rotor model, if the first two 2+ states are
described by Kπ = 0+ and 2+, then

⟨2+
1 ||E2||2+

1 ⟩ + ⟨2+
2 ||E2||2+

2 ⟩

= Q0

√
5

16π

√
2(2) + 1 {⟨20; 20|20⟩ + ⟨22; 20|22⟩} = 0,

(3)

where ⟨20; 20|20⟩ = −⟨22; 20|22⟩. In the limit of the rigid
triaxial rotor (i.e., rigid axially asymmetric rotor), these
are the only two Iπ = 2+ states in the model space. The
theoretical relationship ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ = 0 is

widely known for rotor models (but not the scope and
widespread occurrence of the data). For example, the rigid
triaxial rotor model [26,27] and the axially symmetric β-rigid
γ -vibrator rotor model [28,29] both give this relationship,
which highlights, in part, the difficulty in differentiating
between the two different structures. The possibility of
shape coexistence [30] further complicates this distinction. In
addition, the SU(3) model, which provides a more microscopic
perspective, gives similar results [31]. This is to be expected
because the SU(3) model contracts to the triaxial rigid rotor
model in a large-dimensional limit (i.e., large λ and µ).

While the 2+ quadrupole-moment data seem to be con-
sistent with the prediction of the rotor model, this does not
necessarily mean or imply that these nuclei are rotors. The
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TABLE I. Experimental ⟨2+||E2||2+⟩ (eb) matrix elements and their summation, !.

68Zna,b [2] 70Gea [3] 72Ge [4] 74Ge [5] 76Ge [6] 76Se [7] 78Se [8] 80Se [7] 82Se [7]

2+
1 0.12(+4

−4) 0.05(+4
−4) −0.16(+10

−7 ) −0.25(+3
−3) −0.18(+5

−5) −0.45(+7
−7) −0.26(+9

−9) −0.26(+4
−3) −0.30(+4

−3)

2+
2 0.12(+8

−8) −0.09(+5
−5) 0.30(+10

−0 ) 0.34(+8
−8) 0.37(+8

−8) 0.24(+6
−8) 0.22(+12

−12) 0.53(+3
−3) 0.45(+4

−5)

! 0.24(+9
−9) −0.04(+7

−7) 0.14(+14
−7 ) 0.09(+8

−8) 0.18(+10
−10) −0.21(+9

−11) −0.04(+15
−15) 0.27(+5

−4) 0.15(+6
−6)

74Krb [9] 76Krb [9] 78Krb [10] 106Pd [11] 108Pd [11] 110Pd [12] 114Cd [13] 148Ndb [14] 150Ndb [15]

2+
1 −0.70(+33

−30) −0.9(+3
−3) −0.80(+4

−4) −0.72(+6
−7) −0.81(+4

−9) −0.87(+17
−15) −0.36(+1

−3) −1.85(+4
−5) −2.265(+40

−80)

2+
2 0.33(+28

−23) −1.0(+5
−5) 0.58(+4

−8) 0.52(+6
−5) 0.73(+9

−7) 0.70(+9
−32) 0.92(+4

−5) −1.15(+8
−12) −0.766(+40

−81)

! −0.37(+43
−38) −1.90(+58

−58) −0.22(+6
−9) −0.20(+8

−9) −0.08(+10
−11) −0.17(+19

−35) 0.56(+4
−6) −3.00(+9

−13) −3.03(+6
−11)

166Er [16] 168Er [17] 182W [18] 184W [18] 186Os [19] 188Os [19] 190Os [19] 192Os [19] 194Pta [20] 196Pta [21]

2+
1 −2.33(+19

−12) −3.25(+10
−25) −2.00(+4

−8) −1.97(+6
−4) −1.75(+22

−13) −1.73(+19
−5 ) −1.25(+22

−13) −1.21(+6
−17) 0.61(+6

−6) 0.82(+10
−10)

2+
2 2.97(+17

−15) 2.85(+9
−9) 1.94(+10

−4 ) 2.36(+11
−5 ) 2.12(+6

−22) 2.10(+9
−6) 1.53(+6

−31) 0.985(+45
−85) −0.66(+14

−14) −0.52(+20
−20)

! 0.64(+25
−19) −0.40(+13

−27) −0.06(+11
−9 ) 0.39(+13

−6 ) 0.37(+23
−26) 0.37(+21

−8 ) 0.28(+23
−34) −0.23(+8

−19) −0.05(+15
−15) 0.30(+22

−22)

aNucleus is oblate in shape.
b2+

2 associated with Kπ = 0+.

The simplest model that is consistent with the experimen-
tal observation of ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ ≈ 0 follows

from the quadrupole moments of rotor models (see Bohr and
Mottelson [23] and Rowe and Wood [25]). In the simplest
form, the diagonal reduced E2 matrix elements are given by

⟨IK||E2||IK⟩ = Q0

√
5

16π

√
2I + 1⟨IK; 20|IK⟩ (eb) (1)
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FIG. 1. The ⟨2+
1 ||E2||2+

1 ⟩ and ⟨2+
2 ||E2||2+

2 ⟩ matrix elements from
Table I are plotted together as functions of (a) the atomic number
Z, (b) the first 2+ energy, (c) the ratio of the first 4+ and 2+

energies, and (d) the ground to first 2+ E2 transition strength, where
⟨0+

1 ||E2||2+
1 ⟩ =

√
B(E2; 0+ → 2+). The solid circles are for 2+

1 and
the open circles are for 2+

2 .

and the corresponding static quadrupole moments are given
by

Q(IK) =
√

16π

5
⟨II ; 20|II ⟩√

2I + 1
⟨IK||E2||IK⟩ (eb)

= Q0
3K2 − I (I + 1)
(I + 1)(2I + 3)

(eb), (2)

where I is the total angular momentum, K is the projection of
the total angular momentum onto the body-frame symmetry
axis, and the parameter Q0 is the intrinsic electric quadrupole
deformation.

Within the rotor model, if the first two 2+ states are
described by Kπ = 0+ and 2+, then

⟨2+
1 ||E2||2+

1 ⟩ + ⟨2+
2 ||E2||2+

2 ⟩

= Q0

√
5

16π

√
2(2) + 1 {⟨20; 20|20⟩ + ⟨22; 20|22⟩} = 0,

(3)

where ⟨20; 20|20⟩ = −⟨22; 20|22⟩. In the limit of the rigid
triaxial rotor (i.e., rigid axially asymmetric rotor), these
are the only two Iπ = 2+ states in the model space. The
theoretical relationship ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ = 0 is

widely known for rotor models (but not the scope and
widespread occurrence of the data). For example, the rigid
triaxial rotor model [26,27] and the axially symmetric β-rigid
γ -vibrator rotor model [28,29] both give this relationship,
which highlights, in part, the difficulty in differentiating
between the two different structures. The possibility of
shape coexistence [30] further complicates this distinction. In
addition, the SU(3) model, which provides a more microscopic
perspective, gives similar results [31]. This is to be expected
because the SU(3) model contracts to the triaxial rigid rotor
model in a large-dimensional limit (i.e., large λ and µ).

While the 2+ quadrupole-moment data seem to be con-
sistent with the prediction of the rotor model, this does not
necessarily mean or imply that these nuclei are rotors. The
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FIG. 3. The ⟨4+
1 ||E2||4+

1 ⟩ + ⟨4+
2 ||E2||4+

2 ⟩ and ⟨4+
3 ||E2||4+

3 ⟩ ma-
trix elements from Table II are plotted against each other. Data
points on the solid 45◦ line give ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ +

⟨4+
3 ||E2||4+

3 ⟩ = 0.

hexadecapole structures reside in low-lying 4+ states. While
4+

3 quadrupole moments are terribly difficult to measure,
advancements in detector technology and efficiency, and
sophisticated Coulomb-excitation codes (e.g., GOSIA [65])
make such measurements now feasible and should be
sought.

In conclusion, it is shown that, where multiple-step
Coulomb-excitation data exist, the sum of static quadrupole
moments of atomic nuclei, particularly ⟨2+

1 ||E2||2+
1 ⟩ +

⟨2+
2 ||E2||2+

2 ⟩, are remarkably consistent with zero across
a wide range of masses, deformations, and first 2+ en-
ergies, which include nuclei that have been traditionally
considered vibrational-like from energy patterns. In addi-
tion, ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ + ⟨4+

3 ||E2||4+
3 ⟩ ≈ 0 is ob-

served within two standard deviations for three of the four
existing measurements. The rotor model is the simplest model
that is consistent with the experimental correlations observed
in the static quadrupole moments. However, many of the
nuclei are particularly complex and often exhibit contradictory
signatures (e.g., energy patterns versus E2 matrix-element
patterns). Despite these complexities, the correlations in the
quadrupole moments appear simple. In a future study, it
would be instructive to fully explore quadrupole-moment
sum relationships in various models, including more realistic
microscopic shell models. In light of these results, additional
measurements of nonyrast electric quadrupole-moment data
from multiple-step Coulomb excitation, particularly for 2+

states in the Cd isotopes and 4+ states in the Ru and Mo
isotopes, could provide a better understanding of collectivity
in the low-lying states of atomic nuclei and stimulate further
theoretical investigation.
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TABLE II. Experimental ⟨4+||E2||4+⟩ (eb) matrix elements and
their summation, !.

186Os [19] 188Os [19] 190Os [19] 192Os [19]
4+

1 − 2.02(+39
−18) − 2.00(+9

−20) − 1.28(+27
−19) − 0.73(+26

−6 )

4+
2 − 1.12(+25

−23) − 1.22(+16
−10) − 1.29(+20

−25) − 0.83(+9
−8)

4+
3 2.35(+92

−69) 2.68(+22
−19) 1.02(+18

−4 ) 1.28(+15
−41)

! − 0.79(+103
−75 ) − 0.54(+29

−29) − 1.55(+38
−32) − 0.28(+31

−42)

The Pt and Os region is commonly considered characteristic
of γ -soft and/or triaxial rotors [19,20,36,49–57], with nuclei at
or near a prolate-oblate shape transition and E(4+

1 )/E(2+
1 ) ra-

tios ranging from 2.47 to 3.16. In particular, 196Pt played a key
role in the introduction of the O(6) limit of the IBM via a study
of energy and γ -decay branching patterns of this nucleus [54].
The strict O(6) limit of the IBM gives ⟨0+

1 ||E2||2+
2 ⟩ = 0

and ⟨2+
1,2||E2||2+

1,2⟩ = 0 as a consequence of the O(6) boson
dynamical symmetry (i.e., a selection rule). The rigid triaxial
rotor of Davydov and Filippov [26] gives a similar result for a
triaxiality of γ = 30◦. However, 196Pt has nonzero quadrupole
moments where ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ is consistent

with zero. Recently, it was shown [36] that the E2 properties
of the 2+

1 and 2+
2 states are consistent with a destructive

interference effect in a recently formulated version of the rigid
triaxial rotor model [27], which relaxes the irrotational flow
condition of the Davydov and Filippov model [26], providing
the possibility of ⟨0+

1 ||E2||2+
2 ⟩ = 0 and ⟨2+

1,2||E2||2+
1,2⟩ ̸= 0.

The W and Er isotopes represent traditional rotational-
like nuclei, as is evident from their relatively large electric
quadrupole moments and energy ratios of E(4+

1 )/E(2+
1 ) ∼

3.3 [16–18]. The Er isotopes represent the closest idealization
of the rotor, as was recently shown in a high-precision test in
Ref. [58] using branching ratios from excited Kπ = 2+ states.

In light of the observed correlations in the 2+ quadrupole
moments, it is worth pursuing an attempt to search for
correlations in 4+ quadrupole moments. Table II shows all
the available experimental ⟨4+||E2||4+⟩ matrix elements for
nuclei that have the first three Iπ = 4+ diagonal E2 matrix
elements measured; there are no known Iπ = 3+ states with a
nonzero static quadrupole moment. The data here are limited
and only one study with four measurements on the stable Os
isotopes was found [19]. The first observation is that the first
two 4+ quadrupole moments have the same sign and that the
4+

3 quadrupole moment has the opposite sign. Three of the four
quadrupole-moment sums are consistent with zero to within
2σ , out of which two are consistent with zero to within 1σ .
The quadrupole-moment sum for 190Os is not consistent with
zero. Because the data are limited and do not span a wide range
of masses and deformations, plots similar to those in Fig. 1 are
not possible. The correlations of the 4+ quadrupole-moment
data are shown in Fig. 3.

The simplest model that is consistent with the ex-
perimental observation of ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ +

⟨4+
3 ||E2||4+

3 ⟩ ≈ 0 follows from the quadrupole moments of
rotor models; cf. Eqs. (1) and (2). Within the rotor model, if
the first three 4+ states are described by Kπ = 0+, 2+, and 4+,

then

⟨4+
1 ||E2||4+

1 ⟩ + ⟨4+
2 ||E2||4+

2 ⟩ + ⟨4+
3 ||E2||4+

3 ⟩

= Q0

√
5

16π

√
2(4) + 1{⟨40; 20|40⟩ + ⟨42; 20|42⟩

+ ⟨44; 20|44⟩} = 0, (4)

where ⟨40; 20|40⟩ + ⟨42; 20|42⟩ = −⟨44; 20|44⟩. In the limit
of the rigid triaxial rotor, these are the only three Iπ = 4+

states in the model space. The rigid triaxial rotor model and
the axially symmetric β-rigid γ -vibrator rotor model equally
describe these 4+ quadrupole-moment sums [25,57], which
highlights, in part, the difficulty in differentiating between
the different structures. This zero-sum relationship for spin 4+

was not previously recognized. It turns out that the quadrupole-
moment sums for spin 2+ and 4+ are part of a more general
rule that applies to all spins. For example, for sums over Kπ =
0+, 2+, 4+, . . . ,

√
5

16π
Q0

√
2I + 1 ×

I∑

K=0

⟨IK; 20|IK⟩ = 0, (5)

where K is even (i.e., from reflection symmetry), ⟨IK; 20|IK⟩
is positive for I = K , and ⟨IK; 20|IK⟩ can be negative or
positive for I > K .

The IBM1 (see earlier discussion and explanation of the
calculations) can also explain the observed ⟨4+

1 ||E2||4+
1 ⟩ +

⟨4+
2 ||E2||4+

2 ⟩ + ⟨4+
3 ||E2||4+

3 ⟩ ≈ 0 correlations. The idealiza-
tion of a zero sum can only be reached exactly within the IBM1
when large boson numbers are used. For finite boson number,
the IBM1 predicts that ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ is always

greater in magnitude than ⟨4+
3 ||E2||4+

3 ⟩, which is consistent
with the observed data (i.e., the data systematically fall below
the diagonal line in Fig. 3).

190Os is a clear outlier from ⟨4+
1 ||E2||4+

1 ⟩ +
⟨4+

2 ||E2||4+
2 ⟩ + ⟨4+

3 ||E2||4+
3 ⟩ = 0 and from the other

Os isotopes in Fig. 3. A potential explanation comes from
reports of large two-proton two-quasiparticle (hexadecapole)
components in the 4+

3 wave function [59–61] with the
implication that there must exist another |Iπ = 4+,Kπ = 4+⟩
state. Bagnell et al. [59] report a state at ∼2600 keV in
190,192Os that may contain the remaining two-quasiparticle
component. More recently, a (3He,d) transfer study by Phillips
et al. [62] has found evidence for large Kπ = 4+ hexadecapole
(two-proton two-quasiparticle) components in the 4+

3 states
of 186,188Os. A second |Iπ = 4+,Kπ = 4+⟩ prolate state
would provide a positive quadrupole moment (i.e., it would
contain the missing strength). Of 186,188,190,192Os, 190Os
has been determined [62,63] to have the largest two-proton
two-quasiparticle (hexadecapole) component in the 4+

3 wave
function. This complex character of low-lying Kπ = 4+

bands may be widely occurring [64].
Additional 4+

3 quadrupole-moment measurements in other
mass regions (e.g., A ∼ 110 Ru and Mo isotopes) would
be of high interest to see if correlations are maintained
across a wide range of masses and deformations, such as
those observed for the 2+ quadrupole moments. In addi-
tion, ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ + ⟨4+

3 ||E2||4+
3 ⟩ sums may

provide a valuable tool in determining the degree to which
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TABLE II. Experimental ⟨4+||E2||4+⟩ (eb) matrix elements and
their summation, !.

186Os [19] 188Os [19] 190Os [19] 192Os [19]
4+

1 − 2.02(+39
−18) − 2.00(+9

−20) − 1.28(+27
−19) − 0.73(+26

−6 )

4+
2 − 1.12(+25

−23) − 1.22(+16
−10) − 1.29(+20

−25) − 0.83(+9
−8)

4+
3 2.35(+92

−69) 2.68(+22
−19) 1.02(+18

−4 ) 1.28(+15
−41)

! − 0.79(+103
−75 ) − 0.54(+29

−29) − 1.55(+38
−32) − 0.28(+31

−42)

The Pt and Os region is commonly considered characteristic
of γ -soft and/or triaxial rotors [19,20,36,49–57], with nuclei at
or near a prolate-oblate shape transition and E(4+

1 )/E(2+
1 ) ra-

tios ranging from 2.47 to 3.16. In particular, 196Pt played a key
role in the introduction of the O(6) limit of the IBM via a study
of energy and γ -decay branching patterns of this nucleus [54].
The strict O(6) limit of the IBM gives ⟨0+

1 ||E2||2+
2 ⟩ = 0

and ⟨2+
1,2||E2||2+

1,2⟩ = 0 as a consequence of the O(6) boson
dynamical symmetry (i.e., a selection rule). The rigid triaxial
rotor of Davydov and Filippov [26] gives a similar result for a
triaxiality of γ = 30◦. However, 196Pt has nonzero quadrupole
moments where ⟨2+

1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
2 ⟩ is consistent

with zero. Recently, it was shown [36] that the E2 properties
of the 2+

1 and 2+
2 states are consistent with a destructive

interference effect in a recently formulated version of the rigid
triaxial rotor model [27], which relaxes the irrotational flow
condition of the Davydov and Filippov model [26], providing
the possibility of ⟨0+

1 ||E2||2+
2 ⟩ = 0 and ⟨2+

1,2||E2||2+
1,2⟩ ̸= 0.

The W and Er isotopes represent traditional rotational-
like nuclei, as is evident from their relatively large electric
quadrupole moments and energy ratios of E(4+

1 )/E(2+
1 ) ∼

3.3 [16–18]. The Er isotopes represent the closest idealization
of the rotor, as was recently shown in a high-precision test in
Ref. [58] using branching ratios from excited Kπ = 2+ states.

In light of the observed correlations in the 2+ quadrupole
moments, it is worth pursuing an attempt to search for
correlations in 4+ quadrupole moments. Table II shows all
the available experimental ⟨4+||E2||4+⟩ matrix elements for
nuclei that have the first three Iπ = 4+ diagonal E2 matrix
elements measured; there are no known Iπ = 3+ states with a
nonzero static quadrupole moment. The data here are limited
and only one study with four measurements on the stable Os
isotopes was found [19]. The first observation is that the first
two 4+ quadrupole moments have the same sign and that the
4+

3 quadrupole moment has the opposite sign. Three of the four
quadrupole-moment sums are consistent with zero to within
2σ , out of which two are consistent with zero to within 1σ .
The quadrupole-moment sum for 190Os is not consistent with
zero. Because the data are limited and do not span a wide range
of masses and deformations, plots similar to those in Fig. 1 are
not possible. The correlations of the 4+ quadrupole-moment
data are shown in Fig. 3.

The simplest model that is consistent with the ex-
perimental observation of ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ +

⟨4+
3 ||E2||4+

3 ⟩ ≈ 0 follows from the quadrupole moments of
rotor models; cf. Eqs. (1) and (2). Within the rotor model, if
the first three 4+ states are described by Kπ = 0+, 2+, and 4+,

then

⟨4+
1 ||E2||4+

1 ⟩ + ⟨4+
2 ||E2||4+

2 ⟩ + ⟨4+
3 ||E2||4+

3 ⟩

= Q0

√
5

16π

√
2(4) + 1{⟨40; 20|40⟩ + ⟨42; 20|42⟩

+ ⟨44; 20|44⟩} = 0, (4)

where ⟨40; 20|40⟩ + ⟨42; 20|42⟩ = −⟨44; 20|44⟩. In the limit
of the rigid triaxial rotor, these are the only three Iπ = 4+

states in the model space. The rigid triaxial rotor model and
the axially symmetric β-rigid γ -vibrator rotor model equally
describe these 4+ quadrupole-moment sums [25,57], which
highlights, in part, the difficulty in differentiating between
the different structures. This zero-sum relationship for spin 4+

was not previously recognized. It turns out that the quadrupole-
moment sums for spin 2+ and 4+ are part of a more general
rule that applies to all spins. For example, for sums over Kπ =
0+, 2+, 4+, . . . ,

√
5

16π
Q0

√
2I + 1 ×

I∑

K=0

⟨IK; 20|IK⟩ = 0, (5)

where K is even (i.e., from reflection symmetry), ⟨IK; 20|IK⟩
is positive for I = K , and ⟨IK; 20|IK⟩ can be negative or
positive for I > K .

The IBM1 (see earlier discussion and explanation of the
calculations) can also explain the observed ⟨4+

1 ||E2||4+
1 ⟩ +

⟨4+
2 ||E2||4+

2 ⟩ + ⟨4+
3 ||E2||4+

3 ⟩ ≈ 0 correlations. The idealiza-
tion of a zero sum can only be reached exactly within the IBM1
when large boson numbers are used. For finite boson number,
the IBM1 predicts that ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ is always

greater in magnitude than ⟨4+
3 ||E2||4+

3 ⟩, which is consistent
with the observed data (i.e., the data systematically fall below
the diagonal line in Fig. 3).

190Os is a clear outlier from ⟨4+
1 ||E2||4+

1 ⟩ +
⟨4+

2 ||E2||4+
2 ⟩ + ⟨4+

3 ||E2||4+
3 ⟩ = 0 and from the other

Os isotopes in Fig. 3. A potential explanation comes from
reports of large two-proton two-quasiparticle (hexadecapole)
components in the 4+

3 wave function [59–61] with the
implication that there must exist another |Iπ = 4+,Kπ = 4+⟩
state. Bagnell et al. [59] report a state at ∼2600 keV in
190,192Os that may contain the remaining two-quasiparticle
component. More recently, a (3He,d) transfer study by Phillips
et al. [62] has found evidence for large Kπ = 4+ hexadecapole
(two-proton two-quasiparticle) components in the 4+

3 states
of 186,188Os. A second |Iπ = 4+,Kπ = 4+⟩ prolate state
would provide a positive quadrupole moment (i.e., it would
contain the missing strength). Of 186,188,190,192Os, 190Os
has been determined [62,63] to have the largest two-proton
two-quasiparticle (hexadecapole) component in the 4+

3 wave
function. This complex character of low-lying Kπ = 4+

bands may be widely occurring [64].
Additional 4+

3 quadrupole-moment measurements in other
mass regions (e.g., A ∼ 110 Ru and Mo isotopes) would
be of high interest to see if correlations are maintained
across a wide range of masses and deformations, such as
those observed for the 2+ quadrupole moments. In addi-
tion, ⟨4+

1 ||E2||4+
1 ⟩ + ⟨4+

2 ||E2||4+
2 ⟩ + ⟨4+

3 ||E2||4+
3 ⟩ sums may

provide a valuable tool in determining the degree to which
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TABLE II. Experimental ⟨4+||E2||4+⟩ (eb) matrix elements and
their summation, !.

186Os [19] 188Os [19] 190Os [19] 192Os [19]
4+

1 − 2.02(+39
−18) − 2.00(+9

−20) − 1.28(+27
−19) − 0.73(+26

−6 )

4+
2 − 1.12(+25

−23) − 1.22(+16
−10) − 1.29(+20

−25) − 0.83(+9
−8)

4+
3 2.35(+92

−69) 2.68(+22
−19) 1.02(+18

−4 ) 1.28(+15
−41)

! − 0.79(+103
−75 ) − 0.54(+29

−29) − 1.55(+38
−32) − 0.28(+31

−42)
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1 )/E(2+
1 ) ra-
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1 ||E2||2+
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1,2||E2||2+
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1 ||E2||2+
1 ⟩ + ⟨2+

2 ||E2||2+
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2 states are consistent with a destructive
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√
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Fig. 1. Angular distribution of 50 MeV alpha particles 
inelastically scattered from the ground band and gamma 
band of 166Er. The data for the gamma band differ 
from those shown in (1) in that a second set of data was 
included and the points simply joined where the sets 
disagreed. For the curves labelled Davydov model, the 
static deformation is & = 0.253. ui = 0.035, ab2 = 

0.024 corresponding to Y = 0.193 

predicted on this basis from the known 2’ and 3+ 
energies by O.l%, which is a smaller departure 
than would be induced by the rotation-vibration 
interaction. We note that this deviation is an or- 
der of magnitude less than for all other y-bands 
except those in precisely the cases, 162~y, 
164Dy. 166Er, 1683, where Elbek et al. find 
evidence of Y4 excitation. Thus we are sure that 
this phenomenon is not due to an admixture of 
some foreign state to the y4+ state, and must be 
a property of the intrinsic state. 

An immediate consequence of the simple pic- 
ture we have suggested would be the existence of 
K= 2 bands in these nuclei, defined in terms of 

a normal mode orthogonal to that involved here. 
A well defined K= 2 band exists in 164Dy with 2+ 
at 1.987 MeV. The 4+ of this band is seen by 
Grotdal et al. but the 2+ is apparently not seen. 
On this model, clearly, the 4+ should be more 
strongly excited than the 2+. Certainly, this band 
could be a 2 quasiparticle band as suggested by 
Shelton and Sheline [7]; the band cannot consist 
of a gamma plus a beta phonon, as there is no 
low energy beta phonon. 

The importance of the Y4multipole of residual 
interaction is suggested by inelastic scattering 
experiments on spherical nuclei [8]; in terms of 
the Kumar and Baranger [e. g. 91 picture where a 
self consistent field links a nuclear deformation 
to an interation of the same multipolarity, the 
present phenomenon is a manifestation of the Y4 
interaction. A comparison of the energies of 0 
and y bands shows why there is no reason to ex- 
pect Y40 and Y44 vibrations to occur in the same 
region as Y42 vibrations. 

We comment apropos the custom of assigning 
the spin of a level from a diffraction pattern, that 
the y band 2+ level diffraction pattern excited by 
a Y22 shape, is exactly “out of phase” with the 2+ 
level of the ground band, and of somewhat differ- 
ent slope. 

A calculation in which static Y22 and Y42 de- 
formations are included is also illustrated in the 
figure. The fit to the 4+ level seems poorer. The 
Y22 deformation needed, ai = 0.035 anda /132 = 
0.136 and y = 0.193, is somewhat less than that 
implied by a fit to the energies on a Davydov* 
model, where the spectrum can be fitted with 
u2 ‘02 = 0.154 or y = 0.220, but the possibility of 
simultaneous Y42 and Y22 deformations remains; 
it is not excluded by the work of Das Gupta and 
Preston. Hybrid theories of vibrational gamma 
bands with fixed Y42 seem unappealing Finally 
we note that our results depend critically on the 
sign of B in (1); a negative 0 completely spoils 
both the 2+ and 4’ angular distributions. 

The author is indebted to Bent Sdrensen for 
reading this article, and to B. G. Harvey, D. L. 
Hendrie, and Jeannette Mahoney for providing 
unpublished data. 

* Programs to calculate Faessler-Greiner and 
Davydov-Chaban wave functions were transmitted to 
the author by D. L. Hendrie. 
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A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	
•  Kumar-Cline	sum	rules	

!q3 cos 3!" # $$Q̂ " Q̂%&2' " Q̂%0
&0' # −( 2

35
Qo
3 cos 3!

&39'

can be defined, which are rotational invariants, and are thus
the same in the body frame as the laboratory frame. Expec-
tation values of these invariants can be evaluated because
they can be written as sums of products of E2 reduced matrix
elements by making intermediate state expansions. For
ground-state expectation values in the present model, only
two intermediate states, 21

+ and 22
+, are involved. Thus,

!q2" # !01
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Equation (40) is trivially fulfilled by Eqs. (17) and (18) with
the result !q2"=Qo

2 Equation (41) is fulfilled by Eqs.
(17)–(21), viz.,

!q3 cos 3!" = Qo
3 cos2&# + $'cos&# − 2$'

+ 2Qo
3 cos&# + $'sin&# − 2$'sin&# + $'

− Qo
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which demonstrates the independence of the “triaxiality”
moment with respect to mixing effects.
A final point to be noted regarding the present model

treatment is its direct connection to Mikhailov band mixing

for the 21
+ and 22

+ states. Band mixing for K=0 (ground) and
K=2 (gamma) bands can be expressed generically to lowest
order in the form, originally due to Mikhailov (see [12] for
an extensive discussion),

B&E2;I,K = 2→ I!,K = 0'
!I22,− 2+I!0"2

= ,M1 +M2$I!&I! + 1' − I&I + 1'%-2. &43'

In the present treatment, the %K=2 coupling is given explic-
itly by Eq. (2) and leads to

+G+ =(8&

15
M2

Qo
$E&22

+' − E&21
+'% , &44'

which determines the slope, M2, of a Mikhailov plot. If there
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FIG. 1. Representation of model parameters in the I = 0, 2
subspace. This is useful for correlating the reduced E2 matrix element
strengths and shape asymmetries. Since ⟨01∥T̂ (E2)∥21⟩ is usually
the most precisely known reduced E2 matrix element and since it
is controlled by the smallest angle (! is negative), Q0 is generally
extracted from the left triangle relation.

The parameters A and F are directly determined from the
experimental energies E(2+

1 ) and E(2+
2 ) because |G| ≪ F .

The parameters G, γ , and Q0 are determined via the E2 matrix
elements1

⟨01∥T̂ (E2)∥21⟩ =
√

5
16π

Q0 cos(γ + !), (9)

⟨01∥T̂ (E2)∥22⟩ =
√

5
16π

Q0 sin(γ + !), (10)

⟨21∥T̂ (E2)∥22⟩ =
√

25
56π

Q0 sin(γ − 2!), (11)

⟨21∥T̂ (E2)∥21⟩ = −
√

25
56π

Q0 cos(γ − 2!)

= −⟨22∥T̂ (E2)∥22⟩, (12)

using Eqs. (9)–(11) or Eqs. (10)–(12). Equations (9)–(12) are
usefully depicted as shown in Fig. 1.

The parameters Q0 and γ can alternatively be determined
using the corresponding B(E2)’s,

B(E2; Ii → If ) = ⟨If ∥T̂ (E2)∥Ii⟩2

(2Ii + 1)
, (13)

and quadrupole moments,

Q(2+
1 ) = − 2

7Q0 cos(γ − 2!) = −Q(2+
2 ). (14)

We apply the model [9] to the extensive set of E2 matrix
elements reported by Wu et al. [10]. These matrix elements are
given in Table I. The experimental level energies for 186−192Os
are shown in Fig. 2. Using the above formalism, the model
parameters for 186Os are

A = 1
6
E(2+

1 ) = 22.86 keV, (15)

F = 1
4

[E(2+
2 ) − E(2+

1 )] = 157.6 keV, (16)

Q0 =
√

16π

5

√
⟨01∥T̂ (E2)∥21⟩2 + ⟨01∥T̂ (E2)∥22⟩2

= 5.582 eb, (17)

γ + ! = tan−1

(
⟨01∥T̂ (E2)∥22⟩
⟨01∥T̂ (E2)∥21⟩

)

, (18)

1We note here that a factor of
√

5 was inadvertently omitted from
the right-hand sides of Eqs. (17)–(21) in Ref. [9].

TABLE I. Experimental [10] E2 matrix elements, ⟨If ∥T̂ (E2)
∥Ii⟩’s (eb), for 186−192Os.

186Os 188Os 190Os 192Os

21 − 01 1.674+25
−21 1.585+10

−10 1.530+20
−11 1.456+8

−9

41 − 21 2.761+61
−70 2.642+25

−20 2.367+80
−31 2.115+29

−28

61 − 41 3.89+8
−5 3.31+4

−4 2.970+63
−40 2.930+74

−44

81 − 61 4.32+11
−10 3.97+11

−11 3.72+10
−10 3.58+10

−9

101 − 81 5.02+93
−60 5.00+34

−21 3.98+44
−39 3.80+16

−48

121 − 101 5.16+38
−131 3.76+30

−30 ⊘ ⊘

42 − 22 1.965+87
−66 1.78+7

−5 1.871+42
−37 1.637+24

−33

62 − 42 2.78+18
−11 2.46+10

−10 2.60+12
−16 2.09+6

−13

82 − 62 3.26+35
−28 2.55+22

−69 2.60+36
−19 2.31+17

−16

102 − 82 3.45+88
−40 ⊘ ⊘ ⊘

22 − 01 0.545+13
−7 0.483+2

−9 0.444+9
−7 0.430+8

−4

22 − 21 0.897+64
−14 0.865+11

−11 1.065+20
−37 1.230+34

−16

41 − 22
a 0.227+32

−32 0.378+50
−63 0.19+12

−9 0.35+16
−4

42 − 21 0.419+27
−15 0.283+8

−7 0.203+7
−7 0.130+5

−8

42 − 41 1.220+62
−55 1.10+3

−3 1.435+43
−45 1.35+8

−4

61 − 42
a 0.67+30

−12 0.57+7
−12 0.66+26

−8 0.40+9
−9

62 − 41 ±0.325+20
−26 ±0.127+6

−12 0.195+75
−74 ±0.069+157

−73

62 − 61 1.37+9
−11 1.46+13

−25 1.76+20
−15 1.49+15

−6

21 − 21 −1.75+22
−13 −1.73+19

−5 −1.25+22
−13 −1.21+6

−17

41 − 41 −2.02+39
−18 −2.00+9

−20 −1.28+27
−19 −0.73+26

−6

61 − 61 −1.67+29
−31 −1.60+18

−33 −0.91+24
−15 −1.16+11

−26

81 − 81 −2.26+24
−108 −1.38+44

−26 −0.94+49
−41 −1.31+18

−36

22 − 22 2.12+6
−22 2.10+9

−6 1.53+6
−31 0.985+45

−85

42 − 42 −1.12+25
−23 −1.22+16

−10 −1.29+20
−25 −0.83+9

−8

62 − 62 ⊘ −1.33+23
−56 −0.80+47

−27 −1.35+11
−37

82 − 82 ⊘ ⊘ −1.05+62
−38 −0.91+49

−34

43 − 21 0.08+5
−8 0.123+23

−23 0.052+5
−7 0.115+45

−31

43 − 22 1.19+13
−14 0.83+4

−3 0.77+5
−5 0.786+37

−37

43 − 31
a −1.52+9

−29 −1.17+17
−5 −1.55+7

−40 −1.63+11
−22

43 − 42 1.83+32
−34 1.64+7

−7 1.59+11
−17 1.19+8

−11

43 − 43 2.35+92
−69 2.68+22

−19 1.02+18
−4 1.28+15

−41

aFor an even-rank operator, ⟨If ∥T̂ (E2)∥Ii⟩ = (−1)Ii+If ⟨Ii∥T̂ (E2)
∥If ⟩.

γ − 2! = sin−1

(√
56π

25
⟨21∥T̂ (E2)∥22⟩

Q0

)

, (19)

whence

! = −0.0419 rad (−2.40◦), (20)

γ = 0.3566 rad (20.43◦), (21)

and

G = F

2
√

3
tan(2!) = −3.82 keV. (22)

Equation (12) yields ⟨21∥T̂ (E2)∥21⟩ = −⟨22∥T̂ (E2)∥22⟩ =
−1.90 eb, which can be compared with the experimental
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Recently we have introduced a triaxial rotor model with
independent inertia and electric quadrupole tensors [1]. This
model has been applied to a detailed description of E2 matrix
elements in the osmium isotopes [2]. An important ingredient
of the model is the explicit description of interference
effects that result between the inertia tensor and the electric
quadrupole tensor. In the present study we apply the model to
the P3 term, which is a widely used [3–10] standard measure
of quadrupole interference in collective nuclei, and we show
that it provides a straightforward explanation of P3-term sign
anomalies without the need for higher order deformation terms
such as β4 used by Baker [11,12]. It is important to have
reliable knowledge of the signs of P3 terms because this
can strongly influence the extraction of Q(2+

1 ) values from
Coulomb excitation data [3,4,9,13–15].

The P3 term,

P3 = ⟨01||T̂ (E2)||21⟩⟨21||T̂ (E2)||22⟩⟨22||T̂ (E2)||01⟩, (1)

which is independent of the wave function phases but not the iλ

phase (i.e., iλ⟨I ′||T̂ (E2)||I ⟩, which is sometimes included in
the definition of E2 matrix elements [16]), is straightforwardly
calculated in any model of a nucleus exhibiting quadrupole
collectivity. Early models that addressed this included the
anharmonic vibrator model [17], the triaxial rotor model (with
irrotational flow moments of inertia) of Davydov and Filippov
[18], and the pairing-plus-quadrupole model of Kumar and
Baranger [3]: all give a negative value for the related quantity

P4 = ⟨21||T̂ (E2)||21⟩P3, (2)

which is independent of all phase-factor conventions for the
E2 matrix elements. The importance of this issue for extracting
Q(2+

1 ) values from Coulex data is that the direct path to the 2+
1

state, wherefrom reorientation depends on ⟨21||T̂ (E2)||21⟩,
is interfered with by the 01-22-21 path resulting in up to
40% uncertainties [3,4,9,13–15]. Such uncertainties can yield
ambiguities in sign changes of Q(2+

1 ) as a function of nucleon
number, which impacts the location of prolate-oblate shape
(“phase”) changes in nuclei (see, e.g., Ref. [19]).

The model [1] expressions for the matrix elements relevant
to the present investigation are

⟨01||T̂ (E2)||21⟩ =
√

5
16π

Q0 cos(γ + %), (3)

⟨01||T̂ (E2)||22⟩ =
√

5
16π

Q0 sin(γ + %), (4)

⟨21||T̂ (E2)||22⟩ =
√

25
56π

Q0 sin(γ − 2%), (5)

and

⟨21||T̂ (E2)||21⟩ = −
√

25
56π

Q0 cos(γ − 2%)

= −⟨22||T̂ (E2)||22⟩, (6)

where Q0 ∝ β2 is the intrinsic quadrupole deformation mea-
sured in e b, the angle γ describes the triaxiality of the electric
quadrupole tensor, and % is a mixing angle that depends on the
triaxiality of the inertia tensor. Equations (3)–(6) are usefully
depicted as shown in Fig. 1. The corresponding quadrupole
moments are

Q(2+
1 ) =

√
16π

5
1√

2Ii + 1
⟨22; 20|22⟩⟨21||T̂ (E2)||21⟩

= −2
7
Q0 cos(γ − 2%) = −Q(2+

2 ). (7)

The iλ = −1 phase [16] is not used for the matrix elements
in the present model. The convention for prolate and oblate
shapes follows that of Bohr and Mottelson [20] and of
Davydov and Filippov [21] (i.e., γ = 0◦–30◦ for prolate
shapes, γ = 30◦–60◦ for oblate shapes, and so forth by use
of the D2 symmetry group). However, in practice, fitting
oblate nuclei to Fig. 1 is done by using the γ = 0◦–30◦ range
with a negative intrinsic deformation, −|Q0| ∝ −|β2|, which
preserves the three-axis as the basis, |IK⟩. From that point,
one can map to the γ = 30◦–60◦ range with +|Q0| ∝ +|β2|

5

16π 
Q 0

01 || T̂(2)|| 21

γ + Γ 

25

56π 
Q 0

γ − 2Γ 

21,2 || T̂ (2)||21,2
−+

01|| T̂ (2)|| 22 21|| T̂ (2)||22

(a) (b)

FIG. 1. The geometric representation of the model parameters
and I = 0, 2 subspace.
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independent inertia and electric quadrupole tensors [1]. This
model has been applied to a detailed description of E2 matrix
elements in the osmium isotopes [2]. An important ingredient
of the model is the explicit description of interference
effects that result between the inertia tensor and the electric
quadrupole tensor. In the present study we apply the model to
the P3 term, which is a widely used [3–10] standard measure
of quadrupole interference in collective nuclei, and we show
that it provides a straightforward explanation of P3-term sign
anomalies without the need for higher order deformation terms
such as β4 used by Baker [11,12]. It is important to have
reliable knowledge of the signs of P3 terms because this
can strongly influence the extraction of Q(2+

1 ) values from
Coulomb excitation data [3,4,9,13–15].
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which is independent of the wave function phases but not the iλ

phase (i.e., iλ⟨I ′||T̂ (E2)||I ⟩, which is sometimes included in
the definition of E2 matrix elements [16]), is straightforwardly
calculated in any model of a nucleus exhibiting quadrupole
collectivity. Early models that addressed this included the
anharmonic vibrator model [17], the triaxial rotor model (with
irrotational flow moments of inertia) of Davydov and Filippov
[18], and the pairing-plus-quadrupole model of Kumar and
Baranger [3]: all give a negative value for the related quantity

P4 = ⟨21||T̂ (E2)||21⟩P3, (2)

which is independent of all phase-factor conventions for the
E2 matrix elements. The importance of this issue for extracting
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1 ) values from Coulex data is that the direct path to the 2+
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state, wherefrom reorientation depends on ⟨21||T̂ (E2)||21⟩,
is interfered with by the 01-22-21 path resulting in up to
40% uncertainties [3,4,9,13–15]. Such uncertainties can yield
ambiguities in sign changes of Q(2+

1 ) as a function of nucleon
number, which impacts the location of prolate-oblate shape
(“phase”) changes in nuclei (see, e.g., Ref. [19]).

The model [1] expressions for the matrix elements relevant
to the present investigation are
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sured in e b, the angle γ describes the triaxiality of the electric
quadrupole tensor, and % is a mixing angle that depends on the
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depicted as shown in Fig. 1. The corresponding quadrupole
moments are
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= −2
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2 ). (7)

The iλ = −1 phase [16] is not used for the matrix elements
in the present model. The convention for prolate and oblate
shapes follows that of Bohr and Mottelson [20] and of
Davydov and Filippov [21] (i.e., γ = 0◦–30◦ for prolate
shapes, γ = 30◦–60◦ for oblate shapes, and so forth by use
of the D2 symmetry group). However, in practice, fitting
oblate nuclei to Fig. 1 is done by using the γ = 0◦–30◦ range
with a negative intrinsic deformation, −|Q0| ∝ −|β2|, which
preserves the three-axis as the basis, |IK⟩. From that point,
one can map to the γ = 30◦–60◦ range with +|Q0| ∝ +|β2|
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by 60◦ − γ and −60◦ − ". The two choices for describing
oblate nuclei are equivalent except for the ordering of the axes
which is experimentally indistinguishable. Because the E2
properties of prolate and oblate nuclei are symmetric about
γ = 30◦ (except for the sign of the quadrupole moments)
[21], we confine the use of γ to the 0◦–30◦ range and use
+|Q0| ∝ +|β2| for prolate nuclei and −|Q0| ∝ −|β2| for
oblate nuclei.

From Eqs. (3)–(6), one directly obtains

P4 = 125
7168π2

Q4
0 [cos(4γ − 2") − cos 6"] , (8)

which is zero when γ = |"|, negative when γ > |"|, and
positive when γ < |"| for the 0◦ ! γ ! 30◦ region. Because
P4 ∝ Q4

0 ∝ β4
2 , the sign of P4 is phase independent and,

therefore, strictly determined by the relative amount of E2
and inertial asymmetry, γ and ", respectively. In fact, the
sign of P4 can be determined from Fig. 1(a) alone [i.e., it
is the ⟨01||T̂ (E2)||22⟩ ∝ sin(γ + ") matrix element that is
responsible for the change in sign]. The P4 term is depicted
in Fig. 2 and the phase conventions for the present model are
given in Table I. For irrotational flow,

"irrot = −1
2

cos−1

(
cos 4γ + 2 cos 2γ
√

9 − 8 sin2 3γ

)

, (9)

one obtains that P4 is always <0, as noted above.
The nuclei 192,194Pt are examples where P4 > 0 is observed

[6,8,10]. To our knowledge these are the only examples for
which an anomalous P4 > 0 is certain. Other possibilities
for P4 > 0 include 196Pt [22] and 66Zn [23], but because
⟨01||T̂ (E2)||22⟩ ∼ 0, the experimental errors make the sign
ambiguous. There has also been a recent study of 74,76Kr,
where P4 > 0 with respect to both 22 and 23. However, the
K assignments appear ambiguous because of strong mixing
of K = 0, 2 and of prolate/oblate shapes; shape mixing is
outside of the present description and 22 states that are K = 0
provide P4 > 0 naturally [3]. While this is the limit of our
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FIG. 2. The P4 term, without the scale factor of (125/7168π2)Q4
0,

is shown as a function of " for different values (0◦, 5◦, 10◦, 15◦, 20◦,
25◦, 30◦) of triaxiality, γ . P4 = 0 at γ = |"|. Both prolate and oblate
nuclei are described in this 0◦ ! γ ! 30◦ region; see text for details.

TABLE I. The P3 and P4 sign convention for the region 0◦ !
γ ! 30◦, where oblate E2 shapes are generated in this region by use
of a negative β (i.e., −β2 ∝ −Q0, which preserves the three-axis as
the basis, |IK⟩).

P3 (Triaxial sign convention—no iλ = −1 phase)

γ > |"| γ < |"|

+Q0 (prolate) + −
−Q0 (oblate) − +

P4 (Triaxial sign convention—phase independent)

γ > |"| γ < |"|

+Q0 (prolate) − +
−Q0 (oblate) − +

knowledge on known examples of P4 > 0, future experiments
should especially pay attention to the possibility of P4 > 0
for the Hg isotopes, other Pt isotopes, and neutron-rich Os
isotopes.

The present investigation focuses on explaining the P4 > 0
anomaly for 194Pt, where the 22 state is spectroscopically
known to be K = 2. It has been studied by many groups
using multi-Coulex [6,10,13,19,24–30]. Multi-Coulex studies
provide the key quantity, ⟨21||T̂ (E2)||21⟩, in P4 and they
contribute to the values of ⟨01||T̂ (E2)||21⟩, ⟨21||T̂ (E2)||22⟩,
and ⟨01||T̂ (E2)||22⟩. The value used here for ⟨01||T̂ (E2)||21⟩
is computed from the evaluation of B(E2; 01 → 21) by Raman
et al. [31], which gives ⟨01||T̂ (E2)||21⟩ = 1.2819

8 e b. The mea-
surements contributing to ⟨21||T̂ (E2)||22⟩ and ⟨01||T̂ (E2)||22⟩
are given in Table II and are from γ -ray yields following
multi-Coulex [24–26,28], magnetic analysis of multi-Coulex
scattered ions [27,29], and lifetime measurements using fast
electronic timing [32]. The matrix elements ⟨21||T̂ (E2)||21⟩
and ⟨22||T̂ (E2)||22⟩ are also given in Table II and depend
entirely on multi-Coulex measurements [13,24,25,29,30].

The model parameters Q0, γ , and " can be determined for
194Pt as follows. Using the triaxial parameter space outlined
in Fig. 1 and the linearly weighted experimental E2 matrix
elements in Table II, the model parameters Q0 and γ + " can
be determined from Fig. 1(a) by

Q
′

0 = − 1
0.3154

√
(−1.281)2 + (+0.091)2

= −4.07228 e b, (10)

(γ + ")
′ = arctan

(+0.091
−1.281

)

= −4.0610 deg. (11)

The model parameters Q0 and γ − 2" can be determined from
Fig. 1(b) by

Q
′′

0 = − 1
0.3770

√
(−0.61)2 + (−1.53)2

= − 4.3714 e b, (12)
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knowledge on known examples of P4 > 0, future experiments
should especially pay attention to the possibility of P4 > 0
for the Hg isotopes, other Pt isotopes, and neutron-rich Os
isotopes.

The present investigation focuses on explaining the P4 > 0
anomaly for 194Pt, where the 22 state is spectroscopically
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et al. [31], which gives ⟨01||T̂ (E2)||21⟩ = 1.2819

8 e b. The mea-
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scattered ions [27,29], and lifetime measurements using fast
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and ⟨22||T̂ (E2)||22⟩ are also given in Table II and depend
entirely on multi-Coulex measurements [13,24,25,29,30].

The model parameters Q0, γ , and " can be determined for
194Pt as follows. Using the triaxial parameter space outlined
in Fig. 1 and the linearly weighted experimental E2 matrix
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TABLE II. Experimental E2 matrix elements, in e b, involving
the 21 and 22 states in 194Pt.

⟨01||T̂ (E2)||21⟩a ⟨01||T̂ (E2)||22⟩a ⟨21||T̂ (E2)||22⟩a Source

1.2819
8 [31]

0.088812
12 1.51711

18 [24]

0.0902
2 1.45525

25 [25]

0.0987
7 1.7211

11 [32,33]

0.0846
6 1.7010

10 [26]

0.0977
7 [27]

0.1059
9 [28]

(−) 1.2819 (+) 0.0912 (−) 1.535 Lin. Wt.

⟨21||T̂ (E2)||21⟩ ⟨22||T̂ (E2)||22⟩ Source

+ 0.6318
18 [29]

+ 0.5910
10 [30]

+ 0.548
6 − 0.4012

5 [24]

+ 0.8421
21 − 0.838

8 [13]

− 0.6660
60 [25]

+ 0.616 − 0.6614 Lin. Wt.

aThe signs of individual off-diagonal or transitional E2 matrix ele-
ments are not observables (unlike the diagonal E2 matrix elements).
However, the sign for the product of these matrix elements, P3,
is an observable. Because the signs are arbitrary to the degree
that they give the correct P3 sign, a negative sign (−) is adopted
here for ⟨01||T̂ (E2)||21⟩ and ⟨21||T̂ (E2)||22⟩ to comply with the
convention −β2 ∝ −Q0, γ = 0◦–30◦, which forces ⟨01||T̂ (E2)||22⟩
to be positive (+).

(γ − 2#)
′′ = arctan

(−1.53
−0.61

)

= 68.119 deg, (13)

and

Q
′′′

0 = − 1
0.3770

√
(−0.66)2 + (−1.53)2

= −4.4119 e b, (14)

(γ − 2#)
′′′ = arctan

(−1.53
−0.66

)

= 66.746 deg. (15)

This gives the final model values Q0 = −4.15598 e b, γ =
19.8513 deg, and # = −23.9213 deg (i.e., after taking linearly
weighted averages of the redundantly obtained parameters) or,
equivalently, Q0 = +4.15598 e b, γ = 40.1513 deg, and # =
−36.0813 deg. Although only three matrix elements are needed
to obtain the model parameters, the procedure used above pro-
vides an averaged fit to the I = 0, 2 subspace using all the data
available. We note that the adopted Nuclear Data Sheets’ [33]
branching ratio, Iγ (22 → 01)/Iγ (22 → 21) = 0.136927, leads

TABLE III. The ability of the model to fit the experimental E2
matrix elements, in e b, is shown for the I = 0, 2 subspace. The
three model parameters used are Q0 = −4.15598 e b, γ = 19.8513

deg, and # = −23.9213 deg.

M.E. Exp. (e b) Theory (e b) % dev.

⟨01||T̂ (E2)||21⟩ (−) 1.2819 (−) 1.30731 −2.0%
⟨01||T̂ (E2)||22⟩ (+) 0.0912 (+) 0.092848 2.0%
⟨21||T̂ (E2)||22⟩ (−) 1.535 (−) 1.44934 5.1%
⟨21||T̂ (E2)||21⟩ + 0.616 + 0.59516 −3.1%
⟨22||T̂ (E2)||22⟩ − 0.6614 − 0.59516 9.6%

Exp. (e b)4 Theory (e b)4 % dev.

P4
a + 0.10911 + 0.1057 −4.3%

aThe sign of the P4 term is independent of all phase-factor
conventions for the E2 matrix elements (unlike the P3 term).

to ⟨01||T̂ (E2)||22⟩/⟨21||T̂ (E2)||22⟩ = 0.05676, cf. 0.059518

from the adopted matrix elements in Table II. Ac-
commodation of this datum in our evaluation has not
been made because some of the multi-Coulex analyses
used such a datum. Simple changes, such as “deriving”
⟨01||T̂ (E2)||22⟩ from ⟨21||T̂ (E2)||22⟩, do not change any of
the quantitative results within the quoted uncertainties, e.g.,
from ⟨21||T̂ (E2)||22⟩, ⟨01||T̂ (E2)||22⟩ = 1.535 × 0.05676 =
0.0873 changes Fig. 1(a) to yield, cf. Eq. (11), (γ + #)′ =
−3.8714 deg, whence γ = 19.9813 deg and # = −23.8513 deg.

The model and experimental E2 matrix elements are
compared in Table III. The model parameters yield P4 =
+0.1057 (e b)4; i.e., the model yields a positive value for P4
because γ < |#| (i.e., with respect to using the 0◦ ! γ ! 30◦

region); and, from the positive value of ⟨21||T̂ (E2)||21⟩, the
model yields a positive value for P3.

The present work shows that the triaxial rotor model with
independent inertia and electric quadrupole tensors [1] is
naturally able to explain P3 and P4 sign anomalies. This is
a new insight into collective behavior, namely that the inertia
and electric quadrupole tensors result in a strong interference
effect (e.g., γ + #) that is manifested in the E2 properties of
collective nuclei. Indeed, the present study reveals the need
for a better understanding of the inertia tensor in nuclei (this
is a topic for a separate investigation). The result is significant
also in that previously there was no simple model that could
explain so-called anomalous P3 and P4 values. The sign of the
P3 term can play a significant role in extracting quadrupole
moments of 2+

1 states in nuclei because it can often lead to 40%
uncertainties [3,4,9,13–15]. The present work suggests how to
arrive at the “correct” sign for P3. From a wider perspective, the
model provides a physically insightful means for systematizing
nuclear E2 data.
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P4	<	0	for:	
		Davydov	model	
		anharmonic	vibrator	model	
		pairing-plus-quadrupole	model	

Q0	=	-	4.155	eb,	γ	=	19.85°,	Γ	=	-23.92°	

aThe	sign	of	the	P4	term	is	independent	of	all		
phase-factor	conven@ons	for	the	E2	matrix		
elements	(unlike	the	P3	term).	



•  Destruc@ve	interference	of	E2	matrix	elements	in	a	
triaxial	rotor	model:	196Pt	

A	triaxial	rotor	model:	
with	independent	electric	quadrupole	and	iner@a	tensors	
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TABLE I. The model and experimental E2 matrix elements [4], in eb, are shown for the I = 0, 2
subspace. The model parameters used are Q0 = −3.754(90) eb and γ = −" = 20.5(16)◦. The quantity
%diff. = (⟨||E2||⟩th − ⟨||E2||⟩ex) × 100/|⟨||E2||⟩ex|.

M.E. Exp. (eb) [4] Theory (eb) diff. (eb) % diff.

⟨01||T̂ (E2)||21⟩a (−)1.172(3) (−)1.184(28) −0.012 −1.0%
⟨01||T̂ (E2)||22⟩ 0.0 0.0 0.0 0.0%
⟨21||T̂ (E2)||22⟩a (−)1.36(5) (−)1.243(51) 0.117 8.6%
⟨21||T̂ (E2)||21⟩ +0.83(9) +0.676(79) −0.154 −18.6%
⟨22||T̂ (E2)||22⟩ −0.51(21) −0.676(79) −0.166 −32.5%

aBecause the signs of individual off-diagonal or transitional E2 matrix elements are not directly observable
(unlike the diagonal E2 matrix elements), a negative sign, (−), is adopted here for ⟨01||T̂ (E2)||21⟩ and
⟨21||T̂ (E2)||22⟩ to comply with the −β2 ∝ −Q0, γ = 0◦ − 30◦ convention [3].

determined from the left triangle in Fig. 1(a) by

Q′
0 = − 1

0.3154

√
(−1.172)2 + (0)2 = −3.716(10) eb,

(6)

(γ + ")′ = arctan
(

0
−1.172

)
= 0◦. (7)

The model parameters Q0 and γ − 2" can be determined from
the right triangle in Fig. 1(b) by

Q′′
0 = − 1

0.3770

√
(−0.83)2 + (−1.36)2

= −4.23(13) eb, (8)

(γ − 2")′′ = arctan
(−1.36

−0.83

)
= 58.6(28)◦, (9)

and

Q′′′
0 = − 1

0.3770

√
(−0.51)2 + (−1.36)2

= −3.85(22) eb, (10)

(γ − 2")′′′ = arctan
(−1.36

−0.51

)
= 69.4(78)◦. (11)

The “adopted” model parameters are obtained by taking
linearly-weighted averages of the redundantly obtained pa-
rameters, which give Q0 = −3.754(90) eb and γ = −" =
20.5(16)◦ or, equivalently, Q0 = +3.754(90) eb and γ =
−" = 39.5(16)◦ (details on the “oblate” convention for the
present model are described in Ref. [3]). While only three
matrix elements are needed to obtain the model parameters, the
procedure used above provides an averaged fit to the I = 0, 2
subspace using all the data available.

The model and experimental E2 matrix elements are
compared in Table I. The fact that ⟨21||T̂ (E2)||21⟩ +
⟨22||T̂ (E2)||22⟩ (a parameter free invariant) does not equal
zero reveals that there is mixing from outside the model space,
or that the uncertainties in these matrix elements are larger than
given. However, the important point is that the model can yield
“large” nonzero quadrupole moments, ⟨21,2||T̂ (E2)||21,2⟩,
with the correct sign, even though ⟨01||T̂ (E2)||22⟩ = 0.
Indeed, this is because γ = −" for γ ̸= 30◦.

The sensitivity of the model fit to the experimental E2
matrix elements is shown in Fig. 2 as a function of γ = −";

indeed, the relative model E2 matrix elements are described
by a single parameter, γ , when ⟨01||T̂ (E2)||22⟩ = 0. The
vertical line in Fig. 2 represents the adopted value γ = −" =
20.5(16)◦ [i.e., for −Qo and γ = −" = 39.5(16)◦ for +Qo].
Note that while the model matrix element, ⟨22||T̂ (E2)||22⟩,
deviates by −0.166 eb or −32.5%, from the experimental
value at the adopted γ value (cf. Table I), it is within one
standard deviation of the experimental value; this matrix
element needs to be measured to higher precision for a more
accurate test of the model (cf. remark above on parameter free
invariance of ⟨21||T̂ (E2)||21⟩ + ⟨22||T̂ (E2)||22⟩ = 0).

We note that 196Pt played a key role in the introduction of
the O(6) limit of the interacting boson model, IBM [5] via
a study of γ -decay branching patterns of this nucleus [6].
The O(6) limit of the IBM gives ⟨01||T̂ (E2)||22⟩ = 0 and
⟨21,2||T̂ (E2)||21,2⟩ = 0 as a consequence of the O(6) boson
dynamical symmetry (i.e., a selection rule). Following this
interpretation of 196Pt as an “O(6) nucleus”, a Coulomb exci-
tation study by Lim et al. [7] showed that ⟨21||T̂ (E2)||21⟩ and
⟨22||T̂ (E2)||22⟩ ̸= 0. The present description accommodates
all of the E2 data for the 2+

1 and 2+
2 states in 196Pt.
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FIG. 2. The quantity diff. = ⟨||E2||⟩th − ⟨||E2||⟩ex (eb) is plotted
which shows the sensitivity of the model parameter, γ . The “error
bands” represent the experimental errors and the vertical line
represents the adopted value γ = −" = 20.5(16)◦ [i.e., for −Qo and
γ = −" = 39.5(16)◦ for +Qo]. The “diff.” values for the adopted
γ value are given in Table I.
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Q0	=	-	3.754	eb,	γ	=	20.5°,	Γ	=	-20.5°	

NOTE:	“O(6)”	limit	of	the	IBM	gives:	
						<01||T(E2)||22>	=	0	and	<21||T(E2)||21>	=	0			
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Triaxiality?	



CONCLUSIONS	
•  Need	more	data,	e.g.,	A	~	106	region,	to	answer	ques@ons	about	

triaxiality.	
•  Coulex	studies	MUST	be	complemented	by	transfer	reac@on	and	

inelas@c	scasering	spectroscopy.	
•  As	a	Community,	we	are	running	a	grave	risk	of	“forgejng”	cri@cal	

(historical)	data.	

					CONTENTIONS	
•  We	need	a	much	beser	perspec@ve	on	nuclear	“rota@on”	and	what	

we	mean	by	“moment	of	iner@a”.	
•  There	is	a	serious	lack	of	“standard”	spectroscopy*:		
					“fashion”	is	far	too	prevalent	(and	cannot	answer	fundamental	open	
					ques@ons).	
					*And	lack	of	facili@es	to	conduct	these	cri@cal	experiments.	


