Universität zu Köln

Institut für Kernphysik Zülpicher Strasse 77 50937 Cologne, Germany

A new plunger device for Miniball at HIE-ISOLDE

<u>C. Fransen</u>, T. Braunroth, A. Dewald, A. Goldkuhle, J. Jolie, J. Litzinger, C. Müller-Gatermann, P. Reiter, S. Thiel, N. Warr Institut für Kernphysik, Universität zu Köln, Cologne, Germany L. Gaffney CERN, Geneva, Switzerland

Supported by the BMBF, Grant No. 05P15PKFNA

The recoil distance Doppler-shift method (RDDS)

Universität zu Köln – Institut für Kernphysik

Motivation: Combination of the Recoil Distance Doppler-shift (RDDS) method with Coulomb excitation

Advantages:

- → Precise measurements of lifetimes via other techniques (RDDS,...) reduces number of coupled channels sensitive to the data which simplifies Coulomb excitation analysis.
- \rightarrow lifetimes determined in model-independent way.
- \rightarrow no need to measure absolute cross sections requiring efficiency information.
- \rightarrow can also analyze Coulex data.

Disadvantage:

 \rightarrow need to measure at several target – degrader distances

Universität zu Köln - Institut für Kernphysik

Coulex + RDDS: 1. particle tracking for reconstruction of kinematics

Coulex: Depending on masses: wide angle spread

Solution: gate on scattered projectiles or recoils with position sensitive particle detector: reconstruct kinematics

Universität zu Köln - Institut für Kernphysik

Coulex + RDDS: 2. particle tracking for separation of Coulex channels

Example: Coulex on ¹⁵⁴Sm – ¹⁸¹Ta sandwich target

Possibility to measure absolute distances using sandwich target: ¹⁸¹Ta well known lifetimes

Universität zu Köln - Institut für Kernphysik

Inverse kinematics Coulomb excitation + RDDS

Universität zu Köln - Institut für Kernphysik

Inverse kinematics Coulomb excitation + RDDS: Contribution from Coulex on degrader

Universität zu Köln – Institut für Kernphysik

Inverse kinematics Coulomb excitation + RDDS: Contribution from Coulex on degrader

Second option to eliminate Coulex on degrader from data: measure at large target - degrader distance (t_{flight} >> τ_{level}) slow component only results from Coulex on degrader

Universität zu Köln - Institut für Kernphysik

GOSIA Workshop 2018

Example: lifetime determination of excited states in ¹²⁸Xe with inverse kinematics Coulex + RDDS at JYFL

Gating on target recoils:

reconstruct kinematics from particle emission angles: improve γ -resolution

Further example: Coulex + RDDS with fast radioactive beams: 62,64,66Fe 21+ lifetime measurement at NSCL

NSCL, Michigan State University, coupled cyclotron facility + A1900 fragment separator + S800 mass spectrograph

Investigation of 62,64,66Fe: RDDS + Coulex inv. kinematics

Largest distance of 20 mm: estimate contribution from Coulex on degrader

Universität zu Köln - Institut für Kernphysik

RDDS with fast radioactive beams: Results for neutron-rich Fe, Cr

Universität zu Köln - Institut für Kernphysik

A plunger for the MINIBALL spectrometer at HIE-ISOLDE

MINIBALL:

- \rightarrow 24 six-fold segmented high-purity germanium crystals
- \rightarrow designed for low multiplicity experiments with low-intensity radioactive ion beams ~5.5 MeV/u

A new plunger device for MINIBALL

→ lifetimes of levels with RDDS: $B(\pi I)$ independent lifetime determination → nuclear g-factors

Experiments in inverse kinematics with radioactive beams (few MeV/u), e.g., →Coulex (NIM A 654, 196 (2011)) →(incomplete) fusion, e.g., after ⁷Li breakup

Recoil detection with DSSD: → separation of reaction channels → reconstruction of kinematics (Coulex)

> Aim: Structure of exotic nuclei

Universität zu Köln - Institut für Kernphysik

Requirements for the new plunger device

- placement of MINIBALL HPGe detectors under extreme angles (35°, 145°) for lifetime measurements and different angles for g-factor measurements
- 2. Minimize material in target chamber
- 3. DSSD detector downstream from plunger target/degrader
- 4. target / degrader holders easily replacable with "standard" target holder: plunger left in place for other experiments.
 - 5. Precision of target degrader distance: ~0.1 μ m

6. target – degrader distance range: 0 – 15 mm: v/c ~ 5% $\rightarrow \tau \sim 1 - 500$ ps

General construction

 \rightarrow Plunger mechanics in upstream beamline

 \rightarrow Miniball HPGe detectors under angles between 35° and 145° with respect to beam

Construction of MINIBALL Plunger

Universität zu Köln - Institut für Kernphysik

Control software: GUI for feedback system

 \rightarrow keep distance target – degrader constant (thermal effects) \rightarrow read capacitance signal and deduce relative distance from calibration

Motor for distance changes target – degrader: PI Physik Instrumente model N381 K001 accurancy < 0.3 µm → motor can be used for feedback system, but (so far) higher reliability with separate piezo crystal

T. Braunroth, IKP Cologne

Universität zu Köln – Institut für Kernphysik

Cologne Miniball plunger: mounting target/degrader

Distance between DSSD detector and degrader holder: only few mm! \rightarrow no way to mount/align target/degrader without risk to damage DSSD

 \rightarrow solution: upstream part of plunger can be moved completely out of beam axis

Universität zu Köln - Institut für Kernphysik

Cologne Miniball plunger: mounting target/degrader

\rightarrow solution: upstream part of plunger can be moved completely out of beam axis

Universität zu Köln - Institut für Kernphysik

Plunger completely mounted

Universität zu Köln - Institut für Kernphysik

Miniball plunger @HIE-ISOLDE, April 2017

Handle and bellow for pivoting plunger out of beamline

Cologne Miniball plunger: use for Coulex experiments

Plunger target and degrader can be easily replaced with "standard" Miniball target wheel: no need to dismount plunger for Coulex experiments

Holders for Miniball DSSD detector

Universität zu Köln - Institut für Kernphysik

Options: use for lifetime measurements and Coulex

Replace plunger target / degrader holders with target wheel

Universität zu Köln - Institut für Kernphysik

Status

- February 2017: plunger completely mounted and tested off-beam at Cologne
- March 2017: in-beam test at Cologne FN-tandem (35 MeV ³²S beam):
 - \rightarrow vacuum
 - \rightarrow mechanical stability, feedback system
 - \rightarrow heat conductivity sufficient to avoid heating up of structure
- April 2017: mounted at MINIBALL at HIE-ISOLDE
 → successful alignment at existing beamline
 - \rightarrow test of plunger electronics including feedback system under vacuum
- July 2017: Coulex run
- November 2017: first experiment in plunger configuration: measurement of g-factors in ²⁸Mg (G. Georgiev et al.)

Result: stable operation of plunger at MINIBALL

 January 2018: acceptance of proposal "Investigation of octupole correlations in ^{144,145}Ba using RDDS" (C. Fransen et al.)

Example: Coulex plunger experiment @ HIE-ISOLDE

Expected lifetimes : $\tau(2_1^+) \sim 5 \text{ ps}$ $\tau(4_1^+) \sim 8 \text{ ps}$ \rightarrow sensitive range $\sim 30 \ \mu\text{m} - 300 \ \mu\text{m}$ → Sufficient separation of Dopplershifted gamma-ray lines (Miniball detector under 45°)

Universität zu Köln – Institut für Kernphysik

Measurement of g-factors in ²⁸Mg (G. Georgiev, Nov. 2017): Method: TDRIV on H-like ions

TDRIV - Interaction between the **nuclear spins** (oriented by the reaction) with the electron spins (random) for well defined time (plunger): precession frequency prop. to nuclear g-factor \rightarrow int. of g-rays changes periodically

Universität zu Köln – Institut für Kernphysik

Conclusion

- \rightarrow General introduction: lifetime determination with RDDS + Coulex
- → New plunger device for MINIBALL @ HIE-ISOLDE constructed at Cologne
- → installed at MINIBALL @ HIE-ISOLDE in April 2017
- \rightarrow already successfully used: g-factors in ²⁸Mg
- \rightarrow accepted proposal: "Octupole correlations in ^{144,145}Ba"
- → allows easy change between "standard" (Coulex) experiments and RDDS experiments without change of chamber
- → same geometry including DSSD as MINIBALL "Coulex" chamber

Last but not least: Plunger for antimatter transport(?) (Nature, Feb. 20, 2018)

MENU V nature

🔎 🖂 💽 📥

Physicists plan antimatter's first outing – in a van

Researchers intend to transport the elusive material between labs and use it to study the strange behaviour of rare radioactive nuclei.

Elizabeth Gibney

Antiprotons present a unique way to study the radioactive elements produced at CERN's ISOLDE ion-beam facility. Credit: Julien Marius Ordan/CERN

http://www.nature.com/articles/d41586-018-02221-9

PDF version

RELATED ARTICLES

The race to reveal antimatter's secrets

Ephemeral antimatter atoms pinned down in milestone laser test

SUBJECTS

Nuclear physics

Universität zu Köln - Institut für Kernphysik