Coulex of odd and odd-odd Rb isotopes: problems and solutions

⁹⁸Rb: E. Clément^{1,2}, M. Zielińska³, A. Görgen⁴, W. Korten³, H. Goutte³, J. Libert⁵, S. Péru⁵, S. Hilaire⁵, B. Bastin¹, C. Bauer⁶, A. Blazhev⁷, N. Bree⁸, B. Bruyneel⁷, P. Butler⁹, J. Butterworth¹⁰, P. Delahaye^{1,2}, A. Dijon¹, D. Doherty³, A. Ekström¹¹, C. Fitzpatrick¹², C. Fransen⁷, G. Georgiev¹³, R.Gernhäuser¹⁴, H. Hess⁷, J. Iwanicki¹⁵, D.Jenkins¹⁰, A. C. Larsen⁴, J.Ljungvall^{3,13}, R. Lutter¹⁴, P. Marley¹⁰, K. Moschner⁷, P. Napiorkowski¹⁵, J. Pakarinen^{2,16}, A. Petts⁹, P. Reiter⁷, T. Renstrom⁴, M. Seidlitz⁷, B. Siebeck⁷, S. Siem⁴, C. Sotty^{8,13}, J. Srebrny¹⁵, I. Stefanescu⁸, G.M. Tveten⁴, J. Van de Walle², M. Vermeulen¹⁰, D. Voulot², N. Warr⁷, F. Wenander², A. Wiens⁷, H. De Witte⁸, K. Wrzosek-Lipska^{8,15}

^{97,99} Rb: C. Sotty^{8,13}, M. Zielińska^{3,15}, G. Georgiev¹, D. Balabanski¹⁷, A. Stuchbery¹⁸, A. Blazhev⁷, N. Bree⁸, R. Chevrier⁵, S. Das Gupta¹⁹, J.M. Daugas⁵, T. Davinson²⁰, H. De Witte⁸, J. Diriken⁸, L. Gaffney^{8,9}, K. Geibel⁷, K. Hadyńska-Klęk¹⁵, F. Kondev²¹, J. Konki^{2,16}, T. Kröll⁶, P. Morel⁵, P. Napiorkowski¹⁵, J. Pakarinen^{2,16}, P. Reiter⁷, M. Scheck⁶, M. Seidlitz⁷, B. Siebeck⁷, G. Simpson²², N. Warr⁷, F. Wenander²

 ¹ GANIL, Caen, France; ² ISOLDE, CERN, Geneva, Switzerland; ³ CEA Saclay, France; ⁴ University of Oslo, Norway; ⁵ CEA/DAM, Bruyères-le-Châtel, France; ⁶ Technische Universität Darmstadt, Germany;
⁷ Institute for Nuclear Physics, Cologne, Germany; ⁸ KU Leuven, Belgium; ⁹ University of Liverpool, UK; ¹⁰ University of York, UK; ¹¹ University of Lund, Sweden; ¹² University of Manchester, UK; ¹³ CSNSM, Orsay, France; ¹⁴ LMU Munich, Germany; ¹⁵ Heavy Ion Laboratory, Warsaw, Poland; ¹⁶ University of Jyväskylä, Finland; ¹⁷ INRNE-BAS, Sofia, Bulgaria; ¹⁸ ANU, Canberra, Australia; ¹⁹ Università di Camerino, Italy; ²⁰ University of Edinburgh, UK; ²¹ Argonne National Laboratory, USA; ²² LPSC, Grenoble, France;

Shape transition at N=60

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127

Rubidium isotopes beyond N=58

- onset of deformation at N=60 confirmed by 2⁺ energies and transition probabilities in even-even nuclei (Sr, Zr, Mo...)
- less data for odd nuclei and along southern border of the region low fission yields make such studies more difficult

- no excited states known in ${}^{97-99}$ Rb except for 76keV 5 μ s isomer in 97 Rb (M. Rudigier et al, PRC 87 (2013) 064317)
- ground state spins and quadrupole moments measured in laser spectroscopy (C. Thibault et al, PRC23 (1981) 2720) consistent with a structure change at N=60

Coulomb excitation of ^{93–99}**Rb at ISOLDE**

gamma-ray detection array:MINIBALL8 triple clusters, 8% efficiency

particle detection setup: annular DSSD detector at forward angles detection of scattered Rb and recoiling Ni nuclei

- deexcitation γ rays mesured in coincidence with scattered particles (Rb and Ni)
- 10⁵-10⁶pps beams (10³ for ⁹⁹Rb)
- short measurement time sufficient: about 20 hours of data taking for ⁹⁷Rb!

Results: first observation of collective states in ^{97,99}**Rb**

- statistics sufficient for gamma-gamma coincidences level schemes established
- identification of regular rotational bands

C. Sotty, PhD thesis, Université Paris-Sud (2013)

• Second step: extraction of E2 and M1 matrix elements using GOSIA code

C. Sotty, MZ et al. Phys. Rev. Lett. 115, 172501 (2015)

Problems in ⁹⁷Rb Coulex data analysis

- Cline's safe Coulex criterion not fulfilled for high CM angles
- efficiency for the 68 keV line uncertain

• 355 keV transition obscured by a line in ⁹⁷Sr

 underdetermined problem: 20 gamma rays, 24 matrix elements (E2 and M1)

• very strong correlations between matrix elements

Problems in ⁹⁷Rb Coulex data analysis and solutions

- Cline's safe Coulex criterion not fulfilled for high CM angles
- $\rightarrow~$ 15 % of statistics excluded from the analysis
 - efficiency for the 68 keV line uncertain
- \rightarrow would be a natural choice for normalisation but had to be excluded from the analysis
 - 355 keV transition obscured by a line in ⁹⁷Sr
- → intensity obtained from gamma-gamma coincidences
 - underdetermined problem: 20 gamma rays, 24 matrix elements (E2 and M1)
- ightarrow model assumptions necessary: Alaga rules

 $\langle \mathsf{KI}_{\mathsf{f}} \| \mathsf{E2} \| \mathsf{KI}_{\mathsf{i}} \rangle = \sqrt{(2\mathsf{I}_{\mathsf{i}}+1)} (\mathsf{I}_{\mathsf{i}},\mathsf{K},\!2,0|\mathsf{I}_{\mathsf{f}},\!\mathsf{K}) \sqrt{\frac{5}{16\pi}} e \mathsf{Q}_0$

- \Rightarrow within rotational model E2 branching ratio depends on spins only (Q₀ cancel out)
 - very strong correlations between matrix elements
- ightarrow large uncertainties for low-lying transitions; need for model assumptions

Normalisation to target excitation

• Step 1: for each value of $\langle 7/2^+ || E2 || 3/2^+ \rangle$ all remaining matrix elements in Rb and Ni are fitted to observed gamma-ray intensities and known spectroscopic data

• Alaga rules assumed for each pair of I \rightarrow I-1 and I \rightarrow I-2 E2 transitions: E2 part of a mixed E2/M1 transition determined from the I \rightarrow I-2 intensity, the remaining part of I \rightarrow I-1 attributed to M1 decay

• Step 2: for all other transitions a standard GOSIA1 analysis assuming this value of $\langle 7/2^+\|\text{E}2\|3/2^+\rangle$

Normalisation to target excitation

• full minimisation for each value of $\langle 7/2^+ || E2 || 3/2^+ \rangle$

- fluctuations due to local minima, more steps ("mawr" variable in GOSIA2) give a more smooth dependence (and a new global minimum)
- smooth parts of the χ^2 curve do not change much
- additional test: GOSIA procedure of error estimation (total integrated probability distribution = 68.3%) and χ^2 +1 approach give very similar results

Normalisation to target excitation

• different minimum if Alaga rules imposed

Results: deformation of ⁹⁷**Rb**

• two different assumptions give consistent results for 4 matrix elements

• these 4 transitions are populated in multi-step excitation \rightarrow matrix elements related to observed intensity ratios in ⁹⁷Rb (no need for other normalisation)

Results: deformation of ⁹⁷**Rb**

C. Sotty, MZ et al. PRL 115, 172501 (2015)

- final values of ME: weighted average of values obtained using both assumptions, errors cover the full uncertainty range
- \bullet constant Q₀ within the band
- results consistent with Q_{sp} of the ground state measured in laser spectroscopy
- transition strengths of 60-110 W.u., β deformation \approx 0.31

Relative signs of E2 matrix elements

- GOSIA analysis (not GOSIA2)
- Left: $\langle 13/2^+ || E2 || 9/2^+ \rangle$ vs $\langle 13/2^+ || E2 || 11/2^+ \rangle$ the same signs preferred
- Right: $\langle 15/2^+\|\text{E2}\|11/2^+\rangle$ vs $\langle 13/2^+\|\text{E2}\|11/2^+\rangle$ no sensitivity to relative signs

Effect of correlations

- initial analysis (blue and green):
 - non-safe Coulex included ME for lower states overestimated
 - \circ uncertainty on $\langle 9/2^+\|M1\|7/2^+\rangle$ and $\langle 9/2^+\|E2\|7/2^+\rangle$ underestimated narrow local minimum
 - \circ scattering of Q₀ values around the average due to correlations

Comparison with neighbouring N=58,60 nuclei

C. Sotty, MZ et al. PRL 115, 172501 (2015)

• Q₀ values in ⁹⁷Rb consistent with those in N=60 Zr and Sr nuclei

- visible reduction of Q_0 for N=60 96 Kr similar to what is observed for N=58 nuclei
- Q_{sp} values from laser spectroscopy confirm a dramatic shape change at N=60 in Rb isotopes, deformation for ⁹⁷Rb consistent with Coulex results

Next step: ⁹⁹Rb

C. Sotty, MZ et al. PRL 115, 172501 (2015)

- strong correlations of all matrix elements like in the ⁹⁷Rb case and...
 - very low statistics (few hundred counts in the strongest line)
 - target excitation not observed
 - unresolved doublet at 222 keV
 - extremely underdetermined problem: 6 gamma rays, 15 matrix elements

... but matrix elements in the upper part of a strongly deformed rotational band are related to observed intensity ratios in the nucleus under study (no external normalisation required)

⁹⁹Rb: proposed solution and test on ⁹⁷Rb data

MZ et al. EPJA 52, 99 (2016)

- all E2 matrix elements (including Q_s) coupled using rotational model
- then we fit only M1 matrix elements and one Q₀ to measured gamma-ray intensities

• tested on ⁹⁷Rb data, result consistent with weighted average of Q₀ values obtained in standard analysis

⁹⁹**Rb: results**

• 4 M1 matrix elements and one Q₀ fitted to measured gamma-ray intensities in ⁹⁹Rb

Comparison with neighbouring N=58,60,62 nuclei

C. Sotty, MZ et al. PRL 115, 172501 (2015)

• Q₀ in N=62 ⁹⁹Rb similar to that of ⁹⁷Rb and N=60,62 Zr and Sr nuclei

• large deformation appears in ^{97}Rb and remains constant (in terms of Q_0) with increasing Z and N

Identification of transitions in ⁹⁸Rb

E. Clément, MZ *et al.* Phys. Rev. C 94, 054326 (2016)

- 7 low-energy transitions observed, not in coincidence with any transition in ⁹⁸Sr
- mutual coincidences of 50 keV, 94 keV and 99 keV; 114 keV and 318 keV; 258 and 378 keV
- transitions at 51 keV, 95 keV and 115 keV observed in ⁹⁸Rb + ¹²C at 2.7 MeV/A (S. Bottoni, Phys. Rev. C 92 (2015) 024322): one-step or two-step excitation

Differential cross sections in ⁹⁸Sr

E. Clément, MZ *et al.* Phys. Rev. C 94, 054326 (2016)

- transition intensity normalised to that of the 2_1^+ state
- very different behaviour with scattering angle for two-step and three-step excitation

Construction of ⁹⁸Rb level scheme

E. Clément, MZ *et al.* Phys. Rev. C 94, 054326 (2016)

• pattern consistent with two-step excitation

Construction of ⁹⁸Rb level scheme

E. Clément, MZ *et al.* Phys. Rev. C 94, 054326 (2016)

- pattern consistent with two-step excitation (the same observed for the 99-keV line, which we relate to very low energy differences between the three states)
- less consistent than for 318 keV vs 114 keV, so one-step excitation of the 145 keV level may play a role (the transition would overlap with $2^+ \rightarrow 0^+$ in ⁹⁸Sr)

Construction of ⁹⁸Rb level scheme

E. Clément, MZ *et al.* Phys. Rev. C 94, 054326 (2016)

 clearly one-step excitation: increase of the intensity ratio with scattering angle is related to higher level energy (258 keV vs 114 keV)