

¹²⁰Te -Collapse of the vibrational picture

Mansi Saxena Heavy Ion Laboratory, Warsaw

Systematics of Te isotopes (Z=52)

Collectivity of Te isotopes (Z=52)

Motivation !!!!

- To study the nuclear structure of ^{120,122,124}Te nuclei
- To measure the B(E2; $O^+ \rightarrow 2^+$) value for ¹²⁰Te to a much higher precision !
- To measure the reduced transition probabilities of higher lying states !

Experimental Set up @ IUAC, New Delhi

 $^{58}Ni \rightarrow ^{120,122,124}Te$ (~ 0.15 mg/cm² thickness) @ 175MeV

Coulomb barrier ~ 240 MeV (lab frame)

Experimental Set up @ IUAC, New Delhi

 $^{58}Ni \rightarrow ^{120,122,124}Te$ (~ 0.15 mg/cm² thickness) @ 175MeV

Coulomb barrier ~ 240 MeV (lab frame)

- Scattered projectiles and recoils are detected in an annular gas-filled parallel-plate avalanche counter (PPAC), subtending the angular range θ_{lab} = 15° 45° in the forward direction.
 20 azimuthal segments with ΔΦ=18°.
- De-excitation γ -rays are detected in four clover detectors mounted at $\vartheta_{\gamma} \sim 135^{\circ}$ with respect to the beam direction.
- Data was collected in particle $-\gamma$ coincidence AND.

Dr. R. Kumar – "facilities on COULEX" :-: Wednesday !

Analysis & Results of ⁵⁸Ni + ¹²⁰Te Experiment

Results: ⁵⁸Ni + ¹²⁰Te Experiment

DOUBLE RATIO:
$$B(E2, {}^{120}Te) = B(E2, {}^{122}Te) \xrightarrow{\sigma_{122}_{Te}} \{ \frac{I_{\gamma} ({}^{120}Te)}{I_{\gamma} ({}^{58}Ni)} \{ \frac{I_{\gamma} ({}^{58}Ni)}{I_{\gamma} ({}^{122}Te)} \}$$

 ${}^{120}Te + {}^{58}Ni : \longrightarrow \langle 2^{+} \| M(E2) \| 0^{+} \rangle = 0.816(5)$
 $B(E2; 0^{+} \rightarrow 2^{+}) = 0.666(20)e^{2}b^{2}$

Comparison with LSSM calculations

✓ Effective charge used were e_v = 0.8*e*, e_π = 1.5*e* ✓ SM calculation bottom dashed line with d_{5/2} g_{7/2} inverted

 \checkmark Model space (g_{7/2},d_{5/2}, d_{3/2},s, h_{11/2}) was used. \checkmark The model space was limited for midshell nuclei allowing excitation of four neutrons in the h_{11/2} sub shell

T. Back et.al, Phys.Rev.C 84 (2011)041306

Results: ⁵⁸Ni + ¹²⁰Te Experiment

Comparison with Cd isotopes

 \checkmark The dashed curve is calculated from the exp. Cd data scaled by a factor of (52/48)²

✓ The 2 proton particle states (Te) are identical to the 2 proton hole states (Cd)

Z=52	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121 Te	122Te	123Te	124Te	125Te	126Te	127Te	128Te
	113Sb	114Sb	11586	116Sb	117Sb	11856	11956	120Sb	121Sb	12256	123Sb	12456	12586	126Sb	12756
	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	1185n	1195 <u>n</u>	120Sn	121Sn	122Sn	1235n	124Sn	1258n	126Sn
	lllIn	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	125In
Z=48	110C9	11109	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118C9	119Cd	120Cd	12108	122Cd	123Cd	124Cd
	62		64		66		68		70		72		74		78

Experimental Results of ^{120,122,124}**Te** 1776.2 PHYSICAL REVIEW C 90, 024316 (2014) 615 200 27% 2⁺ 4⁺ ∩⁺ 1201.3 1161.6 Rotational behavior of ^{120,122,124}Te 1103.1 0.601 641 201 M. Saxena,¹ R. Kumar,² A. Jhingan,² S. Mandal,¹ A. Stolarz,³ A. Banerjee,¹ R. K. Bhowmik,² S. Dutt,⁴ 560.4 2+ 1560 J. Kaur,⁵ V. Kumar,⁶ M. Modou Mbaye,⁷ V. R. Sharma,⁸ and H.-J. Wollersheim⁹ **N**⁺ ¹²⁰Te **Experiment** Vibrator **Asymmetric Rotor** IBA-2 10 $2 \xrightarrow{+}{0} 0_1^+$ $(\gamma = 27.5)$ close collisions (¹²⁰Te in PPAC) 1.640(33) 2.0 1.426 1.514 COUNTS /KeV 2.37(58) 3.0 1.781 1.82 0+→2+ 1.215(50) 2.0 0.906 1.560

82.9(47)

20.42

105

 10^{1}_{500}

550

600

) 650 7 ENERGY (keV)

700

800

750

Conclusions of the Experiment

PHYSICAL REVIEW C 90, 024316 (2014)

Rotational behavior of ^{120,122,124}Te

M. Saxena,¹ R. Kumar,² A. Jhingan,² S. Mandal,¹ A. Stolarz,³ A. Banerjee,¹ R. K. Bhowmik,² S. Dutt,⁴ J. Kaur,⁵ V. Kumar,⁶ M. Modou Mbaye,⁷ V. R. Sharma,⁸ and H.-J. Wollersheim⁹

 \Box B(E2; 0⁺ \rightarrow 2⁺) well described by the shell model

• quadrupole deformation β= 0.18

□ Experimental excitation energies and transition probabilities can be described by triaxial rotor model.

- > For ¹²⁰Te the quadrupole moments (Q_{2+}) are not known experimentally.
- > Quadrupole moments (Q₂₊) for ¹²⁰Te will further give us information about the deformation in this nuclei.

Sensitivity of Q(2⁺)

- Excitation probability depends on:
 - projectile scattering angle interaction strength,
 - size and sign of quadrupole moment
- Gamma yields are experimental observable

$$P_{0\to2}^{(2)}(\theta,\xi) = P_{0\to2}^{(1)}(\theta,\xi) \cdot \left[1 + \sqrt{\frac{7}{2\pi}} \frac{5}{4} \cdot \frac{A_p}{Z_p} \cdot \frac{\Delta E}{1 + \frac{A_p}{A_t}} \cdot Q_2 \cdot K(\theta,\xi) \right]$$

$$Q(2^+) = -\sqrt{\frac{2\pi}{7}} \frac{4}{5} \cdot \langle 2 \| M(E2) \| 2 \rangle$$

Sensitivity of Q(2⁺)

- Excitation probability depends on:
 - projectile scattering angle • interaction strength,
 - size and sign of quadrupole • moment
- Gamma yields are experimental • observable

$$P_{0\to2}^{(2)}(\theta,\xi) = P_{0\to2}^{(1)}(\theta,\xi) \cdot \left[1 + \sqrt{\frac{7}{2\pi}} \frac{5}{4} \cdot \frac{A_p}{Z_p} \cdot \frac{\Delta E}{1 + \frac{A_p}{A_t}} \cdot Q_2 \cdot K(\theta,\xi) \right]$$

$$Q(2^{+}) = -\sqrt{\frac{2\pi}{7}} \frac{4}{5} \cdot \langle 2 \| M(E2) \| 2 \rangle$$

Experimental Set Up at HIL, Warsaw

 $^{32}S\,\rightarrow\,^{120}Te$ (~ 0.15 mg/cm² thickness) @ 91 MeV

Coulomb barrier ~ 125 MeV (lab frame)

Doppler Corrected γ-ray Spectrum

Experimental Results

GOSIA – Coulomb Excitation least squares search code

Transition $I_i \rightarrow I_f$	<i<sub>f E2 I_i> (Exp)</i<sub>	B(E2) ↓ (e²b²)
$2_1^+ \rightarrow 0_1^+$	0.778±0.014	0.121±0.004
$4^+ \rightarrow 2_1^+$	1.342±0.019	0.200±0.006
$2_2^+ \rightarrow 2_1^+$	0.955±0.020	0.183±0.009
$2_2^+ \rightarrow 0_1^+$	0.161±0.011	0.0052±0.0008

<l e2 i> (Exp)</l e2 i>	Qs (eb)
-0.55±0.04	-0.41±0.03
-1.02±0.25	-0.77±0.19
	<i e2 i> (Exp) -0.55±0.04 -1.02±0.25</i e2 i>

¹²⁰Te

First experimental proof of deformation in ¹²⁰Te nucleus!!

- Acta Physica Polonica B Vol 49 (2018)

Collective Potential Energy

 \checkmark General Bohr Hamiltonian based on microscopic mean field theory

✓ Two variants of Skyrme interaction – SLy4 & UNEDF0

 $\boldsymbol{\diamondsuit}$ Weak dependence on the $\boldsymbol{\gamma}$ parameter

* Flat minima in the β axis (UNEDFO)

L. Próchniak et. al , HIL Annual Report 2017

Energy levels

L. Próchniak et. al , HIL Annual Report 2017

E2 Matrix Elements

Table 1: Experimental and theoretical matrix elements of the E2 operator (in [eb])

I_1	I_2		$\langle I_1 E2 I_2 \rangle$				
		Exp	Th, SLy4	Th, UNEDF0			
No	n-dia	gonal					
2_1	0_1	0.778 ± 0.014	0.850	0.698			
4_1	2_1	1.342 ± 0.019	1.598	1.298			
2_2	2_1	0.955 ± 0.020	1.119	0.955			
2_2	0_1	0.161 ± 0.011	0.054	-0.019			
Diagonal							
2_1	2_1	-0.55 ± 0.04	-0.421	-0.140			
4_1	4_1	-1.02 ± 0.25	-0.982	-0.419			

L. Próchniak et. al , HIL Annual Report 2017

Summary

✓ Two experiments were performed - different scattering ranges IUAC, Delhi → $\vartheta_{lab} = 15^{\circ} - 45^{\circ}$ (Forward) HIL, Warsaw → $\vartheta_{lab} = 110^{\circ} - 170^{\circ}$ (Backward)

- ✓ Magnitudes and relative signs of the transitional matrix elements of the low-lying states in ¹²⁰Te were determined using GOSIA.
- \checkmark Non-zero value of the diagonal matrix elements of the 2⁺ and 4⁺ states.
- ✓ Theoretical calculations performed using the GBH based on the microscopic mean field theory (SLy4 and UNEDF0)

<u> がたたた</u> List of collaborators

P. J. Napiorkowski, M. Komorowska, M. M.-Minda, M. Palacz, W. Piątek, L. Próchniak, J. Srebrny, A. Stolarz, K. Wrzosek-Lipska *HIL, University of Warsaw, Warsaw, Poland*

M. Kicinska-Habior, A. Korgul Faculty of Physics, University of Warsaw, Warsaw, Poland

C. Henrich, Institut für Kernphysik, T.U.Darmstadt, Germany

R. Kumar, A. Jhingan *I.U.A.C., New Delhi India*

H. J. Wollersheim GSI, Darmstadt, Germany

> P. Doornenbal *RIKEN, Japan* S. Dutt

Department of Physics, AMU, ALigarh, India