Coulomb excitation of ⁴⁵Sc thick target experiment

Magdalena Matejska-Minda IFJ PAN, Kraków

3rd GOSIA Workshop, HIL UW, Warszawa, 9-11.04.2018

AGENDA

- Why ⁴⁵Sc? Overview
- Experimental setup @ HIL UW
- Gosia analysis
- Difficulties due to the thick target measurement
- New measurement @ IUAC New Delhi

Why ⁴⁵Sc?

⁴⁵Sc: odd-even nucleus, 1p4n beyond N=Z=20 GS structure – spherical SM p-h excitations results in SD

⁴⁵Sc - overview

13601

(35/2+)

- Negative parity g.s. spherical
- Positive parity well deformed rotational-like band is formed upon the isomer
- Low-lying positive parity states: promotion of an s-d shell particle to the f_{7/2} shell
- proton 2p1h excitation

⁴⁵Sc level scheme, taken from P. Bednarczyk, et al., Eur. Phys. J. A 2, 157 (1998).

Experimental data on ⁴⁵Sc

Experimental setup @HIL UW

48 PiN-Diode HI Detectors

 θ_{LAB} : 49÷69 deg θ_{CM} : 38÷111 deg

PD set at forward angles for the very first

Energy of back-scattered ions is too small to be detected in PIN diodes.

 γ -rays in coincidence with scattered ions

PiN diode problem

- PIN OR starts continuously lowering, detectors were less and less efficient
- Sunday 20 November
 - 04:40 -> 1.2 kHz (starting it was ~ 20 kHz)
 - 05:35 -> 800 Hz,
 - 07:56 -> 400 Hz
- We increase beam intensity and bias (to 150 V)
- In next few hours PIN OR went down to few counts......
- Radiation damage appeared only 16h was possible change the concept

Experimental setup @HIL UW part2

70 MeV ³²S + **15** mg/cm² ⁴⁵Sc

Integral measurement:

 θ_{CM} : 0÷180 deg

While previously: θ_{LAB} : 49÷69 deg θ_{CM} : 38÷111 deg

Collected γ -ray energy spectrum

- 70 MeV ³²S beam + thick 15 mg/cm2 ⁴⁵Sc target
- Sum over 16 detectors
- Lines originating from the reaction products on the target oxidation are marked; i.e. ⁴⁶Ti, ⁴⁶V, ⁴³Sc

⁴⁵Sc level scheme

 Observation of the 531 and 543 keV confirmed that the positive parity band was populated, and BR confirms identification

Uncertainity estimation

- Thick target oxidized PACE4
- ⁴⁵Sc is one of the weakest fusion-evaporation channel
- The cross-section for the ⁴⁶Ti is 10³ times larger than the one for ⁴⁵Sc
- We took the number of counts in the strongest yrast ⁴⁶Ti line, and we assume the worst scenario, that all decay goes through isomeric band
- 0,001 of ⁴⁶Ti it is 5% of the intensity in the 531 and 543 keV lines
- 5% it is maximal addition to our counts
- we increase our experimental uncertainty

GOSIA calculations

In the NNDC data base:

B(E3, $7/2_{g.s.}^{-}$ → $3/2^{+}$) ≤ 105 e²fm⁶=0.87 W.u. B(E3, $7/2_{g.s.}^{-}$ → $5/2^{+}$) was unknown

Different than the value in the NNDC

Result: B(E3, 7/2⁻_{g.s.} → 5/2⁺) ≤ 1.7 W.u.

"Safe" energy calculations

 $E_b = 70 \text{ MeV}$ was calculated for PiN diodes set in angles: θ_{LAB} : 49÷69 deg

For the thick target experiment $E_b = 70$ MeV is correct for angles:

- for 5 fm: 0 to 70 deg. above the critical angle is 4% (for 543 keV) –
 in the limit of experimental uncertainties
- for 6 fm: 0 to 50 deg. 11 %
- for 7 fm: 0 to 45 deg. 14%

What value should be used for light nuclei (like ⁴⁵Sc)? 5, 6, 7 fm ???

With thick target – easy experiment - difficult analysis......

- Integrate over wide range of scattering angles
- Integrate over wide range of bombarding energies (energy loss in thick target)
- Could not determine both B(E3) excitation probabilities
- Projectile and target combination we were able to populate isomeric band
- Spectrum with particle-gamma coincidences we get at the beginning was very promising, number of counts was similar to the simulated one

Experimental setup @IUAC, New Delhi

Experimental setup @November 2017

⁴⁵Sc TARGETS were made in HIL UW Thickness: 1mg/cm²

One Crystal and all PPAC segments – no DC

CLOVER_3_CRYSTAL_1_Cal 13:54:22 2017-11-29 Analysis/Histograms/CALIBRATED/CLOVER_3_CRYSTAL_1_Cal

Energy [keV]

Measurement performed in November 2017 Analysis is ongoing

- With full statistic (14 crystals)
- Doppler correction for both kinematics
- Gating Etc.we hope to see more lines

COLLABORATION

P.J. Napiorkowski, T.Abraham, J. Iwanicki, M. Kisieliński, M. Komorowska, M. Kowalczyk, T. Marchlewski, P. Matuszczak, M. Palacz, L. Próchniak, M. Saxena, J. Srebrny, A. Stolarz and K. Wrzosek-Lipska HIL, University of Warsaw, PL 02-93 Warsaw, Poland

M. Matejska-Minda , P. Bednarczyk, A. Maj, J. Styczeń, B.Wasilewska IFJ PAN, Kraków, Poland

M. Siciliano Università degli studi di Padova and LNL, INFN Legnaro, Italy

A. Nannini, M. Rocchini INFN Sezione di Firenze, Università degli studi di Firenze, Italy

R. Kumar GDA/INGA Group Inter University Accelerator Centre, New Delhi, India

D. Doherty Department of Physics, University of Surrey, Guildford, UK **K. Hadyńska –Klęk** LNL, INFN Legnaro, Italy

M. Kicińska-Habior Faculty of Physics, University of Warsaw, Poland

> **V. Nanal, R. Palit** *TIFR, Mumbai, India*

G. Kamiński, A. Bezbakh JINR, Dubna, Russia

> **M. Zielińska** CEA Saclay, France

S. Dutt Aligarh Muslim University, Aligarh,India

SUMMARY

- Performed 2 COULEX of ⁴⁵Sc
- Analysis of thick target measurement gives us some hints about BE3 and lifetimes of the 11/2⁻ state
- More lines will come up from new data
- Common analysis of both sets -- get some of the proposal goals
- Disentangle contributions from the BE3 transition probabilities and more ...

THANK YOU FOR YOUR ATTENTION